Skip to main content
Log in

Thermally-reversible gel for 3-D cell culture of chondrocytes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained by the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of the phenotypic markers for articular chondrocytes. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype. We have investigated the use of thermoreversible gelling polymer based on N-isopropylacrylamide for the in vitro cell culture of chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Calandruccio and W. S. Gilmer, J. Bone Joint Surg. 44A (1962) 431.

    Google Scholar 

  2. F. R. Convery, W. H. Akeson and G. H. Keown, Clin. Orthop. 82 (1972) 253.

    Google Scholar 

  3. R. D. Coutts, Cartilage Repair Workshop, Transaction of the Society for Biomaterials, April 1999.

  4. K. E. Kuettner, Clin. Biochem. 25 (1992) 155.

    Google Scholar 

  5. F. H. Silver and A. I. Glasgold, Otolaryngol. Clin. North Am. 5 (1995) 847.

    Google Scholar 

  6. T. Brittberg, The New England J. Med. 331 (1994) 889.

    Google Scholar 

  7. J. P. Vacanti, M. A. Morse, W. M. Saltzman, A. J. Dohb, A. Perez-Atayde and R. Langer, J. Pediatr. Surg. 23 (1988) 3.

    Google Scholar 

  8. J. P. Vacanti, Arch Surg. 123 (1988) 545.

    Google Scholar 

  9. A. Gutowska and K. Krzyminski, Multiple-Stimulus Reversible Hydrogels, Int. Publ. No. 110 02/00193 AZ, U.S. Pat. No. 6,660,247 B1 (2003).

  10. M. Malmsten and B. Lindman, Macromolecules 25 (1992) 5440.

    Google Scholar 

  11. J. Rassing and D. Attwood, Int. J. Pharm. 13 (1983) 47.

    Google Scholar 

  12. H. G. Schild, Prog. Polym. Sci. 17 (1992) 163.

    Google Scholar 

  13. Y. H. Bae, T. Okano and S. W. Kim, Pharm. Res. 8 (1991) 531.

    Google Scholar 

  14. H. G. Schield and D. A. Tirrell, J. Phys. Chem. 94 (1990) 4352.

    Google Scholar 

  15. B. C. Toolan, S. R. Frenkel, D. S. Pereira and H. Alexander, J. Biomed. Mater. Res. 41 (1998) 244.

    Google Scholar 

  16. T. Kimura, N. Yasui, S. Ohsawa and K. Ono, Clin. Orthop. Rel. Res. 186 (1984) 231.

    Google Scholar 

  17. T. Tschan, K. Bohme, M. Conscience-Elgi, G. Zenke, K. H. Winterhalter and P. Bruckner, J. Biol. Chem. 268 (1993) 5156.

    Google Scholar 

  18. K. Salto, M. Iwamoto, K. Nakashima, F. Suzuki and Y. Kato, Exp. Cell Res. 187 (1990) 335.

    Google Scholar 

  19. P. D. Benya and J. D. Shaffer, Cell 30 (1982) 215.

    Google Scholar 

  20. A. Martinsen, G. Skjak-Brack and O. Smidarod, Biotech. Bioeng. 33 (1989) 79.

    Google Scholar 

  21. O. Smidarod and G. Skjak-Brack, Trends Biotech. 8 (1990) 71.

    Google Scholar 

  22. T. K. Paige, C. A. Vacanti, L. G. Cima, J. P. Vacanti and M. J. Yaremchuk, Plast. Surg. Res. Council 38 (1993) 161.

    Google Scholar 

  23. A. Martin, J. Swabrick and A. Cammarata, in “Physical Pharmacy” (Lea and Febiger, Philadelphia, 1983) p. 533.

    Google Scholar 

  24. H. Feil, Y. H. Bae, J. Feijen and S. W. Kim, Macromolecules 26 (1993) 2496.

    Google Scholar 

  25. U. K. Laemmli, Nature 227 (1970) 680.

    Google Scholar 

  26. T. Tokuhuro, T. Amiya, A. Mamada and T. Tanaka, Macromolecules 24 (1991) 2936.

    Google Scholar 

  27. M. V. Deshmukh, A. A. Vaidya, M. G. Kulkarni, P. R. Rajamohanan and S. Ganapathy, Polymer. 41 (2000) 7951.

    Google Scholar 

  28. R. Dell'erba, ibid. 42 (2001) 2655.

    Google Scholar 

  29. C. K. Han and Y. H. Bae, ibid. 39 (1998) 2809.

    Google Scholar 

  30. G. Chen and A. S. Hoffman, Nature 373 (1995) 49.

    Google Scholar 

  31. J. Glowacki, E. Trepman and F. Folkman, Proc. Soc. Exp. Biol. Med. 172 (1983) 93.

    Google Scholar 

  32. B. R. Olsen, Connect Tissue Res. 23 (1989) 115.

    Google Scholar 

  33. R. Mayne and K. Von Der Mark, in “Cartilage, Structure, Function and Biochemistry”, Vol. 1, edited by B. K. Hall (Academic Press, New York, 1983) pp. 181-214.

    Google Scholar 

  34. E. J. Miller, Mol. Cell Biochem. 13 (1976) 165.

    Google Scholar 

  35. P. D. Benya, S. R. Padilla and M. E. Nimni, Biochemistry 16 (1977) 865.

    Google Scholar 

  36. P. D. Benya, S. R. Padilla and M. E. Nimni, Cell 15 (1978) 1313.

    Google Scholar 

  37. F. Lemare, N. Steimberg, C. Le Griel, S. Demignot and M. Adolphe, J. Cell Physiol. 176 (1998) 303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jasionowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasionowski, M., Krzyminski, K., Chrisler, W. et al. Thermally-reversible gel for 3-D cell culture of chondrocytes. Journal of Materials Science: Materials in Medicine 15, 575–582 (2004). https://doi.org/10.1023/B:JMSM.0000026379.24560.a2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000026379.24560.a2

Keywords

Navigation