Skip to main content
Log in

Apatite formation on collagen fibrils in the presence of polyacrylic acid

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, we reported the formation of bone-like apatite on collagen fibrils by biomimetic method. Compounds containing carboxyl moieties are believed to be effective in the formation of apatite. Polyacrylic acid [–CH2CH(COOH)–] n (PAAc) is widely used in dentistry. In the present study, the effect of PAAc in the formation of apatite from revised simulated body fluid (R-SBF) on collagen fibrils was studied. Two different experimental approaches were tried to study the effect of PAAc present in the collagen and in the R-SBF solution. In the first, collagen gel was soaked with 1 mg/ml PAAc (molecular weights 25 000 and 100 000) for the time intervals of 30 min and 6 h. The gels were then dried in air and incubated in R-SBF. Characterization of the precipitates formed on the collagen fibrils in gel showed that the formation of apatite was inhibited when soaked in PAAc for 6 h. In the second experiment, when PAAc (0.1 and 1.0 mg/ml) was mixed with R-SBF the microstructure of the precipitates formed on collagen fibrils was affected partially. Hence, it is confirmed that the presence of PAAc in the biomimetic environment of collagen affects the mineralization of apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. M. Jarcho, C. H. Bolen, J. K. Bobick, J. F. Kay and R. H. Demus, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  2. C. M. Mullar-Mai, S. I. Stupp, C. Voigt and U. Gross, J. Biomed. Mater. Res. 29 (1995) 9.

    Google Scholar 

  3. K. De Groot, J. Ceram. Soc. Jp. 99 (1991) 945.

    Google Scholar 

  4. J. T. Edwards, J. B. Brunski and H. M. Higuchi, J. Biomed. Mater. Res. 36 (1997) 454.

    Google Scholar 

  5. A. Sugaya, M. Minabe, T. Tamura, T. Hori and Y. Watanabe, J. Periodont. Res. 24 (1989) 284.

    Google Scholar 

  6. N. Sasaki, H. Umeda, S. Okada, R. Kojima and A. Fukada, Biomaterials 10 (1989) 129.

    Google Scholar 

  7. J. Hemmerle, M. Leize and J. C. Vogel, J. Mater. Sci. Mater. Med. 6 (1995) 360.

    Google Scholar 

  8. S. Itoh, M. Kikuchi, K. Takakuda, Y. Koyama, H. N. Matsumoto, S. Ichinose, J. Tanaka, T. Kawauchi and K. Shinomiya, J. Biomed. Mater. Res. 54 (2001) 445.

    Google Scholar 

  9. Y. Yokogawa, F. Nagata and M. Toriyama, Chem. Lett. (1999) 527.

  10. E. K. Girija, Y. Yokogawa and F. Nagata, ibid. (2002) 702.

  11. A. L. Boskey, Bone Miner. 6 (1989) 111.

    Google Scholar 

  12. M. J. Glimcher, Anat. Rec. 224 (1989) 139.

    Google Scholar 

  13. M. T. Dimuzio and A. Veis, Calcif. Tissue Res. 25 (1978) 169.

    Google Scholar 

  14. A. Endo and M. J. Glimcher, Conn. Tissue Res. 21 (1989) 179.

    Google Scholar 

  15. E. C. Moreno, K. Varughese and D. I. Hay, Calcif. Tissue Int. 28 (1979) 7.

    Google Scholar 

  16. N. Spanos, P. G. Klepetsanis and P. G. Koutsoukos, J. Colloid Interface Sci. 236 (2001) 260.

    Google Scholar 

  17. M. Johnsson, C. F. Richardson, J. D. Sallis and G. H. Nancollas, Calcif. Tissue Int. 49 (1991) 134.

    Google Scholar 

  18. M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res. 34 (1997) 7.

    Google Scholar 

  19. S. H. Rhee, J. D. Lee and J. D. Tanaka, J. Am. Ceram. Soc. 83 (2000) 2890.

    Google Scholar 

  20. T. Taguchi, Y. Muraoka, H. Matsuyama, A. Kishida and M. Akashi, Bioceramics 12 (1999) 133.

    Google Scholar 

  21. Y. E. Greish and P. W. Brown, J. Mater. Res. 14 (1999) 4637.

    Google Scholar 

  22. M. Kamitahara, M. Kawashita, T. Kokubo and T. Nakamura, Biomaterials 22 (2001) 3191.

    Google Scholar 

  23. Y. Yokogawa, F. Nagata, M. Toriyama, K. Nishizawa and T. Kameyama, J. Mater. Sci. Lett. 18 (1999) 367.

    Google Scholar 

  24. A. D. Wilson, Br. Polym. J. 6 (1974) 165.

    Google Scholar 

  25. H. M. Kim, T. Miyazaki, T. Kokubo and T. Nakamura, Bioceramics 13 (2000) 47.

    Google Scholar 

  26. JCPDS # 9-432.

  27. JCPDS # 41-1475.

  28. P. L. Granja, C. C. Ribeiro, B. De Jeso, C. Baquey and M. A. Barbosa, J. Mater. Sci. Mater. Med. 12785 (2001) 658.

    Google Scholar 

  29. C. Tas, J. Am. Ceram. Soc. 84 (2001) 295.

    Google Scholar 

  30. M. Vignoles, G. Bonel, D. W. Holcomband and R. A. Young, Calcif. Tissue Int. 43 (1988) 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girija, E.K., Yokogawa, Y. & Nagata, F. Apatite formation on collagen fibrils in the presence of polyacrylic acid. Journal of Materials Science: Materials in Medicine 15, 593–599 (2004). https://doi.org/10.1023/B:JMSM.0000026101.53272.86

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000026101.53272.86

Keywords

Navigation