Skip to main content
Log in

Cements from nanocrystalline hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium phosphate cements are used as bone substitute materials because they may be moulded to fill a void or defect in bone and are osteoconductive. Although apatite cements are stronger than brushite cements, they are potentially less resorbable in vivo. Brushite cements are three-component systems whereby phosphate ions and water react with a soluble calcium phosphate to form brushite (CaHPO4·2H2O). Previously reported brushite cement formulations set following the mixture of a calcium phosphate, such as β-tricalcium phosphate (β-TCP), with an acidic component such as H3PO4 or monocalcium phosphate monohydrate (MCPM). Due to its low solubility, hydroxyapatite (HA) is yet to be reported as a reactive component in calcium phosphate cement systems. Here we report a new cement system setting to form a matrix consisting predominantly of brushite following the mixture of phosphoric acid with nanocrystalline HA. As a result of the relative ease with which ionic substitutions may be made in apatite this route may offer a novel way to control cement composition or setting characteristics. Since kinetic solubility is dependent on particle size and precipitation temperature is known to affect precipitated HA crystal size, the phase composition and mechanical properties of cements made from HA precipitated at temperatures between 4 and 60 °C were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Miyamoto, K. Ishikawa, H. Fukao, M. Sawada, M. Nagayama, M. Kon and K. Asaoka, Biomaterials 16 (1995) 855.

    Google Scholar 

  2. L. M. Grover, J. C. Knowles, G. J. P. Fleming and J. E. Barralet, ibid. 24 (2003) 4133.

    Google Scholar 

  3. M. Bohner, H. P. Merkle and J. Lemaître, J. Mater. Sci. Mater. Med. 11 (2000) 155.

    Google Scholar 

  4. M. Bohner, Injury, Int. J. Care Injured 31 (2000) S-D37-4.

  5. Khairoun, F. C. M. Driessens, M. G. Boltong, J. A. Planell and R. Wenz, Biomaterials 20 (1999) 393.

    Google Scholar 

  6. Yokoyama, S. Yamamoto, T. Kawasaki, T. Kohgo and M. Nakasu, ibid. 23 (2002) 1091.

    Google Scholar 

  7. P. Frayssinet, L. Gineste, P. Conte, J. Fages and N. Rouquet, ibid. 19 (1998) 971.

    Google Scholar 

  8. W. E. Brown and L. C. Chow, US Pat. 4518430 (1985).

  9. W. E. Brown and L. C. Chow, US Pat. 461053 (1986).

  10. W. E. Brown and L. C. Chow, Proc. Am. Ceram. Soc. (1986) 352.

  11. M. Bohner, Eur. Spine J. 10 (2001) S114.

    Google Scholar 

  12. M. Nilsson, E. Fernández, S. Sarda and L. Lidgren, J. Biomed. Mater. Res. 61 (2002) 600.

    Google Scholar 

  13. J. Lemaître, A. Mirtchi and A. Mortier, Silicates Industries 10 (1987) 141.

    Google Scholar 

  14. G. Vereecke and J. Lemaître, J. Cryst. Growth 104 (1990) 820.

    Google Scholar 

  15. M. Bohner, P. Van Landuyt, H. P. Merkle and J. Lemaître, J. Mater. Sci. Mater. Med. 8 (1997) 675.

    Google Scholar 

  16. M. Bohner, H. P. Merkle, P. Van Landuyt, G. Trophardy and J. Lemaître, ibid. 11 (2000) 111.

    Google Scholar 

  17. L. C. Chow and S. Takagi, J. Res. Natl. Inst. Stand. Technol. 106 (2001) 1029.

    Google Scholar 

  18. J. C. Elliot, in “Studies in Inorganic Chemistry -Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Elsevier Science B.V., London, 1994).

    Google Scholar 

  19. C. Lui, Y. Huang, W. Shen and J. Cui, Biomaterials 22 (2001) 301.

    Google Scholar 

  20. M. Jarcho, R. L. Salsbury, M. B. Thomas and R. H. Doremus, J. Mater. Sci. 14 (1979) 142.

    Google Scholar 

  21. American National Standards Institute/American Dental Association, Specification number 61 for zinc carboxylate cement, J. Am. Dent. Assoc. 101 (1980) 660.

    Google Scholar 

  22. P. W. Brown and R. I. Martin, J. Phys. Chem. B 103 (1999) 1671.

    Google Scholar 

  23. K. Ishikawa, S. Takagi, L. C. Chow and Y. Ishikawa, J. Mater. Sci. Mater. Med. 6 (1995) 528.

    Google Scholar 

  24. C. Liu and W. Shen, ibid. 8 (1997) 803.

    Google Scholar 

  25. K. Ishikawa and K. Asaoka, J. Biomed. Mater. Res. 29 (1995) 1537.

    Google Scholar 

  26. L. C. Chow, S. Hirayama, S. Takagi and E. Parry, ibid. 53 (2000) 511.

    Google Scholar 

  27. U. Gbureck, J. E. Barralet, L. Radu, H. G. Klinger and R. Thull, J. Am. Ceram. Soc. (2003) (in press).

  28. R. P. Del Real, J. G. C. Wolke, M. Vallet-Regiand and J. A. Jansen, Biomaterials 23 (2002) 3673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Barralet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barralet, J.E., Lilley, K.J., Grover, L.M. et al. Cements from nanocrystalline hydroxyapatite. Journal of Materials Science: Materials in Medicine 15, 407–411 (2004). https://doi.org/10.1023/B:JMSM.0000021111.48592.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000021111.48592.ab

Keywords

Navigation