Skip to main content
Log in

Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanocomposites comprising hydroxyapatite (HAp) and silk fibroin (SF) were synthesized from Ca(OH)2 suspension co-dispersed with SF fine particles and H3PO4 solution via a wet-mechanochemical route. The SF particles were modified with an alkali solution to increase contact points between HAp phase and SF matrix. HAp crystallites grow more preferentially along c-axis on alkali pretreated SF substrates. The composites exhibit porous microstructure with 70% of open porosity and about 70% of the interpores ranging from 40 to 115 μm in diameter. The peak shifts in amide II band of SF indicate that the chemical interactions between HAp crystals and SF matrix are intensified by the alkali pretreatment of SF. The stronger inorganic-organic interactions promote the formation of three-dimensional network extending throughout the composites, bringing about an increase of 63% in the Vickers hardness to the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Tenhuisen, R. I. Martin, M. Klimkiewicz and P. W. Brown, J. Biomed. Mater. Res. 29 (1995) 803.

    Google Scholar 

  2. M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka, Biomaterials 22 (2001) 1705.

    Google Scholar 

  3. C. Du, F. Z. Cui, W. Zhang, Q. L. Feng, X. D. Zhu and K. De Groot, J. Biomed. Mater. Res. 50 (2000) 518.

    Google Scholar 

  4. W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman and J. Abram, Biomaterials 2 (1981) 185.

    Google Scholar 

  5. P. T. Ton That, K. E. Tanner and W. Bonfield, J. Biomed. Mater. Res. 51 (2000) 453.

    Google Scholar 

  6. M. Wang and W. Bonfield, Biomaterials 22 (2001) 1311.

    Google Scholar 

  7. M. C. Chang, T. Ikoma, M. Kikuchi and J. Tanaka, J. Mater. Sci. Lett. 20 (2001) 1199.

    Google Scholar 

  8. T. Furuzono, T. Taguchi, A. Kishida, M. Akashi and Y. Tamada, J. Biomed. Mater. Res. 50 (2000) 344.

    Google Scholar 

  9. L. Wang, R. Nemoto and M. Senna, J. Nanoparticle Res. 4 (2002) 535.

    Google Scholar 

  10. Y. J. Yin, F. Zhao, X. F. Song, K. D. Yao, W. W. Lu and J. C. Leong, J. Appl. Polym. Sci. 77 (2000) 2929.

    Google Scholar 

  11. M. Ito, Y. Hidaka, M. Nakajima, H. Yagasaki and A. H. Kafrawy, J. Biomed. Mater. Res. 45 (1999) 204.

    Google Scholar 

  12. I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma and J. Tanaka, J. Biomed. Mater. Res. 55 (2001) 20.

    Google Scholar 

  13. S. H. Rhee and J. Tanaka, J. Am. Ceram. Soc. 84 (2001) 459.

    Google Scholar 

  14. S. H. Rhee and J. Tanaka, J. Mater. Sci.: Mater. Med. 13 (2002) 597.

    Google Scholar 

  15. S. J. Park, K. Y. Lee, W. S. Ha and S. Y. Park, J. Appl. Polym. Sci. 74 (1999) 2571.

    Google Scholar 

  16. G. Freddi, P. Monti, M. Nagura, Y. Gotoh and M. Tsukada, J. Polym. Sci. B: Polym. Phys. 35 (1997) 841.

    Google Scholar 

  17. Q. W. Gao, Z. Z. Shao, Y. Y. Sun, H. Lin, P. Zhou and T. Y. Yu, Polym. J. 32 (2000) 269.

    Google Scholar 

  18. K. Hamada and M. Senna, J. Mater. Sci. 31 (1996) 1725.

    Google Scholar 

  19. F. Izumi and T. Ikeda, Mater. Sci. Forum 321 (2000) 198.

    Google Scholar 

  20. I. R. Gibson and W. Bonfield, J. Biomed. Mater. Res. 59 (2002) 697.

    Google Scholar 

  21. N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka and T. Ochi, ibid. 59 (2002) 110.

    Google Scholar 

  22. A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano and S. Franzese, Biomaterials 22 (2001) 1365.

    Google Scholar 

  23. K. A. Hing, S. M. Best and W. Bonfield, J. Mater. Sci.: Mater. Med. 10 (1999) 135.

    Google Scholar 

  24. P. Sepulveda, J. G. P. Binner, S. O. Rogero, O. Z. Higa and J. C. Bressiani, J. Biomed. Mater. Res. 50 (2000) 27.

    Google Scholar 

  25. G. P. Evans, J. C. Behiri, J. D. Currey, W. Bonfield, J. Mater. Sci.: Mater. Med. 1 (1990) 38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Senna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Nemoto, R. & Senna, M. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite. Journal of Materials Science: Materials in Medicine 15, 261–265 (2004). https://doi.org/10.1023/B:JMSM.0000015486.02633.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000015486.02633.ce

Keywords

Navigation