Skip to main content
Log in

Cell growth and function on calcium phosphate reinforced chitosan scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Macroporous chitosan scaffolds reinforced by calcium phosphate powders such as hydroxyapatite (HA) or calcium phosphate invert glass were fabricated using a thermally induced phase separation technique. Human osteoblast-like MG63 cells were cultured on the composite scaffolds for up to 11 days, and the cell growth and function were analyzed. The cell growth is much faster on the chitosan/HA scaffolds incorporated with the glass (CHG) than on the chitosan/HA scaffold without the glass (CH). The total protein content of cells were quantified and increased over time on both composites (CH, CHG) but was significantly higher on CHG after 7 days of culture. The cells on CHG also expressed significantly higher amount of alkaline phosphatase at days 7 and 11 and osteocalcin at day 7 than those on CH. The results suggested that the addition of glass in chitosan/hydroxyapatite composite scaffolds might enhance the proliferation and osteoblastic phenotype expression of MG63 cells. However, the chitosan-matrix scaffolds did not show higher phenotype expression of MG63 cells, in comparison with the TCPS plate, probably due to the degradation of chitosan and release of acidic byproducts. Larger amount of soluble calcium phosphate invert glasses should be added into the scaffolds to prevent chitosan from fast degradation that may affect the differentiation of osteoblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Hubbell, Bio/Technol. 13 (1995) 565.

    Google Scholar 

  2. L. E. Niklason and R. S. Langer, Transplant. Immunol. 5 (1997) 303.

    Google Scholar 

  3. W. W. Minuth, M. Sittinger and S. Kloth, Cell Tissue Res. 291 (1998) 1.

    Google Scholar 

  4. S. Miyazaki, K. Ishii and T. Nadai, Chem. Pharm. Bull. (Tokyo) 29 (1981) 3067.

    Google Scholar 

  5. S. Hirano, C. Itakura, H. Seino, Y. Akiyama, I. Nonaka, N. Kanbara and T. Kawakami, J. Agric. Food Chem. 38 (1990) 1214.

    Google Scholar 

  6. K. Aiedeh, E. Gianasi, I. Orienti and V. Zecchi, J. Microencapsul. 14 (1997) 567.

    Google Scholar 

  7. S. Miyazaki, H. Yamaguchi, M. Takada, W. M. Hou, Y. Takeichi and H. Yasubuchi, Acta Pharm. Nord. 2 (1990) 401.

    Google Scholar 

  8. R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castaldini and C. Rizzoli, Biomaterials 10 (1989) 598.

    Google Scholar 

  9. R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli and V. Vasi, ibid. 9 (1988) 247.

    Google Scholar 

  10. V. M. Sundararajan and W. T. M. Howard, ibid. 20 (1999) 1133.

    Google Scholar 

  11. M. Wang, D. Porter and W. Bonfield, Br. Ceram. Trans. 93 (1994) 91.

    Google Scholar 

  12. R. Zhang and P. X. Ma, J. Biomed. Mater. Res. 44 (1999) 446.

    Google Scholar 

  13. Y. Shikinami and M. Okuno, Biomaterials 20 (1998) 859.

    Google Scholar 

  14. C. M. Agrawal and K. A. Athanasiou, J. Biomed. Mater. Res. Appl. Biomater. 38 (1997) 105.

    Google Scholar 

  15. D. Hutmacher, A. Kirsch, K. L. Ackermann and M. B. Huerzeler, in “Biological Matrices and Tissue Reconstruction”, edited by G. B. Stark, R. Horch and E. Tancos (Springer, Heidelberg, Germany, 1998) p. 197.

    Google Scholar 

  16. Y. M. Lee, Y. J. Park, S. J. Lee, Y. Ku, S. B. Han, S. M. Choi, P. R. Klokkevold and C. P. Chung, J. Periodontol. 71 (2001) 410.

    Google Scholar 

  17. Y. M. Lee, Y. J. Park, S. J. Lee, Y. Ku, S. B. Han, P. R. Klokkevold and C. P. Chung, ibid. 71 (2001) 418.

    Google Scholar 

  18. J. Wilson and S. Low, J. Appl. Biomater. 3 (1992) 123.

    Google Scholar 

  19. H. Oonishi, S. Kushitani, E. Yasukawa, L. L. Hench, J. Wilson, E. Tsuji and T. Sugihara, in “Bioceramics”, edited by O. H. Andersson, R. P. Happonen and A. Yli-Urpo (Turku, Finland, Butterworth Heinemann, 1994) p. 139.

    Google Scholar 

  20. L. J. H. Chern, M. L. Liu and C. P. Ju, Dent. Mater. 9 (1993) 286.

    Google Scholar 

  21. T. Kitsugi, T. Yamamuro, T. Nakamura, T. Kokubo, M. Takagi, T. Shibuya, H. Takeuchi and M. Ono, J. Biomed. Mater. Res. 21 (1987) 1109.

    Google Scholar 

  22. K. De Groot, Biomaterials 1 (1980) 47.

    Google Scholar 

  23. C. P. Klein, Y. Abe, H. Hosono and K. De Groot, Biomaterials 5 (1984) 362.

    Google Scholar 

  24. Y. Zhang and M. Q. Zhang, J. Biomed. Mater. Res. 55 (2001) 304.

    Google Scholar 

  25. Y. Zhang and J. D. Santos, J. Non-cryst Solids 272 (2000) 14.

    Google Scholar 

  26. O. H. Lowry, N. R. Roberts, M. Wu, W. S. Hixon and E. J. Crawford, J. Biol. Chem. 207 (1954) 19.

    Google Scholar 

  27. Y. Gotoh, K. Hiraiwa and M. Narajama, Bone and Miner. 8 (1990) 239.

    Google Scholar 

  28. A. El-Ghannam, P. Ducheyne and I. Shapiro, Biomaterials 18 (1997) 295.

    Google Scholar 

  29. R. K. Sinha, F. Morris, A. Suken, A. Shah and R. Tuan, Clin. Orthop. 305 (1994) 258.

    Google Scholar 

  30. G. S. Stein, J. B. Lian and T. A. Owen, FASEB J. 4 (1990) 3111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miqin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. Journal of Materials Science: Materials in Medicine 15, 255–260 (2004). https://doi.org/10.1023/B:JMSM.0000015485.94665.25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000015485.94665.25

Keywords

Navigation