Advertisement

Characterization of nanostructure phenomena in airborne particulate aggregates and their potential for respiratory health effects

  • L. E. Murr
  • E. V. Esquivel
  • J. J. Bang
Article

Abstract

Airborne aggregates of nanoparticulates were collected on carbon/form-coated, 100-mesh Ni TEM grids in a thermal precipitator and observed in an analytical TEM utilizing a BF-SAED-DF-EDS characterization protocol to identify the nanocrystalline or nanoparticulate components, especially their degree of crystallinity, size, structural/morphologic features, and chemistries. Reference aggregates of TiO2 rutile and anatase as well as Si3N4 nanoparticles were used to establish these characterization protocols, which were applied to several hundred individual particulates: homogeneous aggregates of carbonaceous/diesel particulate matter, complex mixtures of carbonaceous matter, including carbon nanocrystals, and inorganic nanocrystals; and heterogeneous, nanocrystal/nanoparticulate aggregates. Most airborne particulates were aggregates ranging in aerodynamic diameters from a few nanometers to a few microns; containing as few as 2 nanocrystals to several thousand nanocrystals or nanoparticulates such as carbonaceous spherules arranged in complex branched homogeneous aggregates composing diesel exhaust, with spherule diameters ranging from 10 to 30 nm. The potential for ultrafine airborne aggregates to fragment into hundreds or thousands of nanoparticulate components in human airways and act as toxic agents in deep lung tissue is demonstrated.

Keywords

TiO2 Diesel Rutile Diesel Exhaust Aerodynamic Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Churg, M. Baure, S. Verdal and B. Stevens, J. Environ. Med. 1 (1999) 39.Google Scholar
  2. 2.
    L. C. Renwick, K. Donaldson and A. Clouter, Toxical. Appl. Pharmacol. 172 (2001) 119.Google Scholar
  3. 3.
    S. Momarca, R. Crebelli, D. Terretti, A. Zanardini, S. Fuselli and L. Filini, Sci. Total Environ. 205 (1997) 137.Google Scholar
  4. 4.
    J. J. Bang and L. E. Murr, JOM, 54 (2002) 28.Google Scholar
  5. 5.
    J. J. Bang, E. A. Trillo and L. E. Murr, J. Air Waste Managmt. Assoc. 53 (2003) 227.Google Scholar
  6. 6.
    Environmental Protection Agency (US), “Air Quality Criteria for Particulate Matter”, vol. III, EPA/600/P-95/001CF (National Center for Environ. Assessment, Research Triangle Park, NC, 1996).Google Scholar
  7. 7.
    R. R. Chianelli, M. J. Yacaman, J. Arenas and F. Aldape, J. Hazardous Substance Res. 1 (1998) 1.Google Scholar
  8. 8.
    M. R. Hoffmann, Chem. Rev. 95 (1995) 69.Google Scholar
  9. 9.
    G. Oberdörster, J. N. Finkelstein, C. Johnston, R. Gelein, C. Cox, R. Baggs and A. C. P. Elder, Res. Report 96 “Acute Pulmonary Effects of Ultrafine Particles in Rats and Mice”, (Health Effects Institute, Cambridge, MA, 2000).Google Scholar
  10. 10.
    R. T. Burnett, J. Brook, T. Dann, C. Delocla, D. Philips, S. Cakmak, R. Vincent, M. S. Goldberg and D. Krewski, Inhal. Toxicol. 12(Suppl. 4) (2000) 15.Google Scholar
  11. 11.
    W. P. Watkinson, M. J. Campen and D. L. Costa, Toxicol. Sci. 41 (1998) 209.Google Scholar
  12. 12.
    R. W. Clarke, B. Goull, U. Reinich, P. Catalano, C. R. Killingsworth, P. Koutrakis, I. Kavouras, G. Gazula, K. Murthy, J. Lawrence, E. Lovett, J. M. Wolfson, R. L. Verrier and J. J. Godleski, Environ. Health Perspect. 108 (2000) 1179.Google Scholar
  13. 13.
    A. Nemmar, P. H. M. Hoet, B. Van Quickenborne, D. Dinsdale, M. Thomeer, M. F. Hoylaerts, H. Van Billoen, L. Mortelmans and B. Nemery, Circulation 105 (2002) 411.Google Scholar
  14. 14.
    A. Nemmar, H. Van Billoen, M. F. Hoylaerts, P. H. M. Hoet, A. Verbruggen and B. Nemery, Amer. J. Respir. Crit Care Med. 164 (2001) 1665.Google Scholar
  15. 15.
    J. J. Bang and L. E. Murr, J. Mater. Sci. Lett., 21 (2002) 361.Google Scholar
  16. 16.
    L. E. Murr, “Electron and Ion Microscopy and Microanalysis: Principles and Applications”, 2nd edn (Marcel Dekker, New York, 1991).Google Scholar
  17. 17.
    K. W. Katrinak, P. Rez, P. R. Perkes and P. R. Buseck, Environ. Sci. Tech. 27 (1993) 639.Google Scholar
  18. 18.
    P. Meakin, Phys. Rev. Lett. 51 (1983) 1119.Google Scholar
  19. 19.
    T. A. Whitten and L. M. Sander, Phys. Rev. B 27 (1983) 5686.Google Scholar
  20. 20.
    G. Skillas, S. Kunzel, H. Burtscher, U. Baltensperger and K. Siegman, J. Aerosol. Sci. 29 (1998) 411.Google Scholar
  21. 21.
    H. Sato, H. Sone, M. Sagai, K. T. Suzuki and Y. Aoki, Carcinogenisis, 21 (2000) 653.Google Scholar
  22. 22.
    A. E. Nel, D. Diaz-Sanchez and N. Li, Curr. Opin. Pulm. Med. 7 (2001) 201.Google Scholar
  23. 23.
    F. Hofer, C. Mitterbauer, I. Papst and M. A. Pabst, Eurem 12 (2002) B413.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • L. E. Murr
    • 1
  • E. V. Esquivel
    • 1
  • J. J. Bang
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations