Skip to main content
Log in

Biodegradation behavior and cytotoxicity of the composite membrane composed of β-dicalcium pyrophosphate and glucose mediated (polyethylene glycol/chitosan)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study is to prepare and evaluate the biodegradation behavior and cytotoxicity of a composite membrane, G-β-DCP, combining β-dicalcium pyrophosphate (β-DCP) ceramic particles and glucose mediated chitosan–polyethylene glycol (PEG) membrane. The cytotoxicity of the G-β-DCP was examined by the in vitro method of NIH 3T3 fibroblast cell culture. Extracts were obtained by soaking the G-β-DCP composite in lysozyme containing phosphate buffer solution for 2, 7, 14, 21 and 28 days, respectively. The substances released from the G-β-DCP composite were analyzed by gas chromatography–mass spectrometry (GC–MAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The change in morphologies, chemical composition and crystal structure was examined by scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The results of extracts cocultured with fibroblasts show that the growth of fibroblasts would increase for the extracts obtained from different β-DCP feeding weight G-β-DCP composites after soaking for 7 days. After further increasing the soaking time, the cell number still increases. It is found that the glucose amine and calcium are gradually released from the G-β-DCP composites, which is considered to be nutritious for the growth of the fibroblast. The release rate of calcium ion and glucosamine concentration can be regulated by feeding the β-DCP. The degradation behavior of G-β-DCP composite is considered as an “onion degradation model” that the G-β-DCP degrades from outer layer to inner layer. The developed material should have a great potential as a cell substrate in the field of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borzacchiello, L. Ambrosio, P. A. Netti, L. Nicolais, C. Peniche, A. Gallardo and J. San Roman, J. Mater. Sci.-Mater. Med. 12 (2001) 861.

    Google Scholar 

  2. H. Ueno, H. Yamada, I. Tanka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa and T. Fujinaga, Biomaterials 20 (1999) 1407.

    Google Scholar 

  3. J. X. Lu, F. Prudhommeaux, A. Meunier, L. Sedel and G. Guillemin, ibid. 20 (1999) 1937.

    Google Scholar 

  4. Y. J. Park, Y. M. Lee, S. N. Park, S. Y. Sheen, C. P. Chung and S. J. Lee, ibid. 21 (2000) 153.

    Google Scholar 

  5. M. Sugimoto, M. Mormoto, H. Saahiwa, H. Saimoto and Y. Shigemasa, Carbohydr. Polym. 36 (1998) 45.

    Google Scholar 

  6. V. L. Alexeev, E. A. Kelberg and G. A. Evmenenko, Polym. Eng. Sci. 40 (2000) 1211.

    Google Scholar 

  7. J. W. Wang and M. H. Hon, J. Biomat. Poylm. Sci. Polym. Edn. 14 (2003) 119.

    Google Scholar 

  8. X. Zeng and E. Ruckenstein, Indust. Eng. Chem. Res. 35 (1996) 4169.

    Google Scholar 

  9. Q. Li, E. T. Dunn, E. W. Grandmaison and F. A. Mattheus, in “Application of Chitin and Chitosan” (Technomic publishing, Lancaster, 1997) p. 3.

    Google Scholar 

  10. V. Crescenzi, G. Paradossi, P. Desideri, M. Dentini, F. Cavalieri, E. Amici and R. Lisi, Polym. Gel. Netw. 5 (1997) 225.

    Google Scholar 

  11. F. L. Mi, H. W. Sung and S. S. Shyu, J. Polym. Sci.: Part A: Polym. Chem. 38 (2000) 2804.

    Google Scholar 

  12. J. Z. Knaul, S. M. Hudson and A. M. Creber, J. Polym. Sci. Pt. B-Polym. Phys. 37 (1999) 1079.

    Google Scholar 

  13. V. Evageliou, R. K. Richardson and E. R. Morris, Carbohydr. Polym. 42 (2000) 261.

    Google Scholar 

  14. J. W. Wang and M. H. Hon, J. Biomater. Mater. Res. 4A (2003) 262.

    Google Scholar 

  15. C. Klein, K. De Groot, A. A. Driessen and H. B. M. Lubbe, Biomaterials 6 (1985) 189.

    Google Scholar 

  16. P. Ducheyne, J. Biomed. Mater. Res.: Appl. Biomater. 21A (1987) 219.

    Google Scholar 

  17. F. H. Lin, C. C. Lin, C. M. Lu, H. C. Liu, J. S. Sun and C. Y. Wang, Biomaterials 16 (1995) 793.

    Google Scholar 

  18. Y. Okamoto, M. Watanate, K. Miyatake, M. Morimoto, Y. Shigema and S. Minami, ibid. 23 (2002) 1975.

    Google Scholar 

  19. S. I. F. S. Martins, W. M. F. Jongen and M. A. J. S. van Boekel, Trends Food Sci. Technol. 11 (2001) 364.

    Google Scholar 

  20. M. J. Brand, C. M. Alink, M. A. J. S. Van Boekl and W. M. F. Jongen, J. Agric. Food Sci 48 (2000) 2271.

    Google Scholar 

  21. F. H. Lin, C. J. Liao, K. S. Chen, J. S. Sun and H. C. Liu, Biomaterials 18 (1997) 915.

    Google Scholar 

  22. R. J. Nordtveit, K. M. Varum and O. Smidsrod, Carbohydr. Polym. 29 (1996) 163.

    Google Scholar 

  23. C. H. Yao, J. S. Sun, F. H. Lin, C. J. Liao and C. W. Huang, Mater. Chem. Phys. 45 (1996) 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.W., Hon, M.H. Biodegradation behavior and cytotoxicity of the composite membrane composed of β-dicalcium pyrophosphate and glucose mediated (polyethylene glycol/chitosan). Journal of Materials Science: Materials in Medicine 15, 129–136 (2004). https://doi.org/10.1023/B:JMSM.0000011813.45822.0b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000011813.45822.0b

Keywords

Navigation