Skip to main content
Log in

Carbon–carbon composite bearing materials in hip arthroplasty: analysis of wear and biological response to wear debris

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene wear particles have been implicated as the major cause of osteolysis, implant loosening and late aseptic failure in total hip arthroplasties in vivo. This study initially screened 22 carbon–carbon composite materials as alternatives for UHMWPE in joint bearings. New bearing materials should satisfy certain criteria – they should have good wear properties that at least match UHMWPE, and produce wear particles with low levels of cytotoxic and osteolytic activity. Initial screening was based on wear resistance determined in short-term tribological pin-on-plate tests. Three materials (HMU–PP(s), HMU–RC–P(s), and SMS–RC–P(s)) which had superior wear resistance were selected for long-term testing. All materials had very low wear factors and SMS–RC–P(s), which had a wear factor of 0.08±0.56×10−7 mm3/Nm, was selected for the subsequent biological testing and particle size analysis. SMS–RC–P(s) showed good biocompatibility in bulk material form and also the wear particles had low cytotoxicity for L929 fibroblasts in culture compared to metal wear particles. Wear debris size analysis by transmission electron microscopy showed that the particles were very small, with the vast majority being under 100 nm in size, similar to metal wear particles. The potential osteolytic effect of SMS–RC–P(s) wear particles was investigated by culturing particles with human peripheral blood mononuclear cells and measuring TNFα production. SMS–RC–P(s) did not significantly stimulate TNFα production at a particle volume to cell number ratio of 80 : 1, indicating that the debris had a low osteolytic potential. The results of this study suggest that carbon–carbon composites, particularly those composed of PAN-based fibers may be important biomaterials in the development of next generation bearing surfaces for use in total joint replacements that have very low wear rates and reduced osteolytic and cytotoxic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Harris, A. L. Schiller, J. M. Scholler, R. A. Freiberg and R. Scott, J. Bone Joint Surg. 58A (1976) 612.

    Google Scholar 

  2. H. G. Willert and M. Semlitsch, J. Biomed. Mater. Res. 11 (1977) 157.

    Google Scholar 

  3. H. C. Amstutz, P. Campbell, N. Kossovsky and I. C. Clarke, Clin. Orthop. 276 (1992) 7.

    Google Scholar 

  4. J. A. Savio, L. M. Overcamp and J. Black, Clini. Mater. 12 (1994) 1.

    Google Scholar 

  5. S. Shanbhag, J. J. Jacobs, T. Glant, J. L. Gilbert, J. Black and J. O. Galante, J. Bone Joint Surg. 76B (1994) 60.

    Google Scholar 

  6. P. Campbell, S. Ma, B. Yeom, H. Mckellop, T. P. Schmalzried and H. C. Amstutz, J. Biomed. Mater. Res. 29 (1995) 127.

    Google Scholar 

  7. D. W. Murray and N. Rushton, J. Bone. Joint Surg. 72B (1990) 988.

    Google Scholar 

  8. D. R. Bertolini, G. E. Nedwin, T. S. Bringham, D. D. Smith and G. R. Mundy, Nature 319 (1986) 516.

    Google Scholar 

  9. T. R. Green, J. Fisher, M. H. Stone, B. M. Wroblewski and E. Ingham, Biomaterials 19 (1998) 2297.

    Google Scholar 

  10. B. Matthews, A. A. Besong, T. R. Green, M. H. Stone, B. M. Wroblewski and J. Fisher, E. Ingham, J. Biomed. Mater. Res. 52 (2000) 296.

    Google Scholar 

  11. Y. T. Konttinen, J. W. Xu, H. Patiala, S. Imai, V. Waris, T. F. Li, S. B. Goodman, L. Nordsletten and S. Santavirta, Curr. Orthop. 11 (1997) 40.

    Google Scholar 

  12. Semlitsch, R. M. Streicher and H. Weber, Orthopaedics 18 (1989) 36.

    Google Scholar 

  13. E. Ingham and J. Fisher, Proc. Inst. Mech. Eng.: J. Eng. Med. 214H (2000) 21.

    Google Scholar 

  14. J. M. Lee, E. A. Salvati, F. Betts, E. F. Dicarlo, S. B. Doty and P. G. Bullough, J. Bone Joint Surg. 74B (1992) 380.

    Google Scholar 

  15. F. Doorn, P. A. Campbell, J. Worrall, P. D. Benya, H. A. Mckellop and H. C. Amstutz, J. Biomed. Mater. Res. 42 (1998) 103.

    Google Scholar 

  16. E. W. Soh, G. W. Blunn, M. E. Wait and P. S. Walker, Trans. Orthop. Res. Soc. 42 (1996) 462.

    Google Scholar 

  17. M. E. Muller Clin. Orthop. Rel. Res. 311 (1995) 54.

    Google Scholar 

  18. T. Rae, J. Bone Joint Surg. 57B (1975) 444.

    Google Scholar 

  19. C. P. Case, V. G. Langkamer, R. D. Howell, J. Webb, G. Standen, M. Palmer, A. Kemp and I. A. Learmonth, Clin. Orthop. Rel. Res. 329S (1996) S269.

    Google Scholar 

  20. P. F. Doorn, J. M. Mirra, P. A. Campbell and H. C. Amstutz, ibid. 329S (1996) S187.

    Google Scholar 

  21. J. Y. Wang, B. H. Wicklund, R. B. Gustilo and D. T. Tsukayama, ibid. 339 (1997) 216.

    Google Scholar 

  22. M. A. Germain, J. B. Matthews, M. H. Stone, J. Fisher and E. Ingham, Proc. Euro. Soc. Biomater. (2001) T76.

  23. G. I. Howling, H. Sakoda, A. Antonarulrajah, H. Marrs, T. D. Stewart, S. Appleyard, B. Rand, J. Fisher and E. Ingham, J. Biomed. Mater. Res. (App. Biomater.) (submitted).

  24. H. Marrs, D. C. Barton, R. A. Jones, I. M. Ward, J. Fisher and C. Doyle, J. Mater. Sci. Mater. Med. 10 (1999) 333.

    Google Scholar 

  25. H. E. Wilcox, Private communication (2002).

  26. J. H. Ingram, PhD Thesis, University of Leeds, (2002).

  27. J. B. Matthews, T. R. Green, M. H. Stone, B. M. Wroblewski, J. Fisher and E. Ingham, Biomaterials 21 (2000) 2033.

    Google Scholar 

  28. J. B. Matthews, W. Mitchell, M. H. Stone, J. Fisher, and E. Ingham, Proc. Instn. Mech. Engrs. Eng. Med. 215H (2001) 479.

    Google Scholar 

  29. W. Mitchell, J. B. Matthews, M. H. Stone, J. Fisher and E. Ingham, Biomaterials 24 (2003) 469-479.

    Google Scholar 

  30. R. R. Sokal and F. J. Rohlf, in “Biometry” (W.H. Freeman & Co, New York, 1981) p. 208.

    Google Scholar 

  31. P. J. Firkins, J. L. Tipper M. R. Saadatzadeh, E. Iingham, M. H. Stone, R. Farrar and J. Fisher. Biomed. Mater. Eng. 11 (2001) 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howling, G.I., Ingham, E., Sakoda, H. et al. Carbon–carbon composite bearing materials in hip arthroplasty: analysis of wear and biological response to wear debris. Journal of Materials Science: Materials in Medicine 15, 91–98 (2004). https://doi.org/10.1023/B:JMSM.0000010102.26218.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000010102.26218.d1

Keywords

Navigation