Skip to main content
Log in

Effects of reducing and oxidizing atmospheres on the PTCR characteristics of porous n-BaTiO3 ceramics by adding polyethylene glycol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Donor doped BaTiO3 (n-BaTiO3) ceramics were fabricated by adding polyethylene glycol (PEG) at 20 wt %. The effects of reducing and oxidizing atmospheres on the PTCR characteristics of the porous n-BaTiO3 ceramics were investigated. The PTCR characteristics of the porous n-BaTiO3 ceramics is strongly affected by chemisorbed oxygen at the grain boundaries and are recovered as the atmosphere is changed from the reducing gas to oxidizing gas. The low room-temperature resistivity of the porous n-BaTiO3 ceramics in reducing atmospheres may be caused by the decrease in potential barrier height, which originates from an increase in the number of electrons owing to the desorption of chemisorbed oxygen atoms at the grain boundaries. In addition, the high room-temperature resistivity of the porous n-BaTiO3 ceramics in oxidizing atmospheres may be caused by the increase in potential barrier height, which results from the adsorption of chemisorbed oxygen atoms at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nagamoto, H. Kagotani and T. Okubo, J. Am. Ceram. Soc. 76 (1993) 2053.

    Google Scholar 

  2. H. Emoto and J. Hojo, J. Ceram. Soc. Jpn. 100 (1992) 555.

    Google Scholar 

  3. I. C. Ho, J. Am. Ceram. Soc. 77 (1994) 829.

    Google Scholar 

  4. I. C. Ho and H. L. Hsieh, ibid. 76 (1993) 2385.

    Google Scholar 

  5. H. F. Cheng, T. F. Lin and C. T. Hu, ibid. 76 (1993) 827.

    Google Scholar 

  6. B. C. Lacourse and V. R. W. Amarakoon, ibid. 78 (1995) 3352.

    Google Scholar 

  7. O. Saburi, J. Phys. Soc. Jpn. 14 (1959) 1159.

    Google Scholar 

  8. W. Heywang, J. Mater. Sci. 6 (1971) 1214.

    Google Scholar 

  9. G. H. Jonker, Solid State Electron 7 (1964) 895.

    Google Scholar 

  10. J. Daniels and R. Wernike, Philips Res. Rep. 31 (1976) 544.

    Google Scholar 

  11. T. R. N. Kutty, P. Murugaraj and N. S. Gajbhiye, Mater. Res. Bull. 20 (1985) 565.

    Google Scholar 

  12. W. Heywang, J. Am. Ceram. Soc. 47 (1964) 484.

    Google Scholar 

  13. W. Heywang, Solid State Electron. 3 (1961) 51.

    Google Scholar 

  14. T. F. Lin, C. T. Hu and I. N. Lin, J. Am. Ceram. Soc. 73 (1990) 531.

    Google Scholar 

  15. I. C. Ho and S. L. Fu ibid. 75 (1992) 728.

    Google Scholar 

  16. N. Kataoka, K. Hayashi, T. Yamamoto, Y. Sugawara, Y. Ikuwara and T. Sakuma, ibid. 81 (1998) 1961.

    Google Scholar 

  17. T. Miki, A. Fujimoto and S. Jido, J. Appl. Phys. 83 (1998) 1592.

    Google Scholar 

  18. J.-S. Kim and S.-J. L. Kang, J. Am. Ceram. Soc. 82 (1999) 1196.

    Google Scholar 

  19. K. Hayashi, T. Yamamoto, Y. Ikuwara and T. Sakuma, ibid. 83 (2000) 2684.

    Google Scholar 

  20. S. Y. Yoon, K. H. Lee and H. Kim, ibid. 83 (2000) 2463.

    Google Scholar 

  21. M. Kahn, Am. Ceram. Soc. Bull. 50 (1971) 676.

    Google Scholar 

  22. G. Er, S. Ishida and N. Takeuchi, J. Ceram. Soc. Jpn. 106 (1998) 470.

    Google Scholar 

  23. N. Kurata and M. Kuwabara, ibid. 106 (1998) 1092.

    Google Scholar 

  24. S. Tashiro, A. Osonoi and H. Igarashi ibid. 107 (1999) 15.

    Google Scholar 

  25. M. Kuwabara, J. Am. Ceram. Soc. 64 (1981) 639.

    Google Scholar 

  26. S.-M. Su, L.-Y. Zhang, H.-T. Sun and X. Yao, ibid. 77 (1994) 2154.

    Google Scholar 

  27. T. R. Shrout, D. Moffatt and W. Huebner, J. Mater. Sci. 26 (1991) 145.

    Google Scholar 

  28. J.-G. Kim, W.-S. Cho and K. Park, Mater. Sci. Eng. B 77 (2000) 255.

    Google Scholar 

  29. M. Kuwabara, Solid State Electron. 27 (1984) 929.

    Google Scholar 

  30. H. Allak, G. Russel and J. Woods, J. Phys. D. Appl. Phys. 20 (1987) 1645.

    Google Scholar 

  31. J. G. Fagan and V. R. W. Amarakoon, Am. Ceram. Soc. Bull. 72 (1993) 69.

    Google Scholar 

  32. D. C. Sinclair and A. R. West, J. Mater. Sci. 29 (1994) 6061.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JG., Tai, WP., Kwon, YJ. et al. Effects of reducing and oxidizing atmospheres on the PTCR characteristics of porous n-BaTiO3 ceramics by adding polyethylene glycol. Journal of Materials Science: Materials in Electronics 15, 807–811 (2004). https://doi.org/10.1023/B:JMSE.0000045304.50039.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000045304.50039.e2

Keywords

Navigation