Skip to main content
Log in

Space charge limited current, variable range hopping and mobility gap in thermally evaporated amorphous InSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have analyzed the properties of as-deposited InSe thin films, deposited onto well cleaned glass substrates under a vacuum of 10−5 Torr, using X-ray diffraction, Rutherford back scattering, energy dispersive analysis of X-rays, optical transmittance and current–voltage (120–390 K) measurements. Allowed and indirect transition was identified and the mobility gap was determined as 1.44 eV. Under low field (<1×105 V cm−1) and in the temperature range of 130–200 K, the conductivity in the films was behaving like that of Mott's variable-range hopping (VRH) type. Mott's parameters such as characteristics temperature (T 0), hopping range (R hop), hopping energy (W hop), values of localized states density N (E F), and activation energy (E a) were estimated. In the temperature range 210–290 K, thermionic conduction mechanism plays a dominant role and its activation energy was calculated. At high field (>2×105 V cm−1) and in the temperature range of 300–390 K, space charge limited conduction currents (SCLC) mechanism was observed and the related parameters, such as electron density (n 0), trap density (n t), the ratio between free electron density to the total electron density (Θ), mobility (μ) and the effective mobility (μeff) of the InSe film of typical thickness 265 nm were calculated and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. F. Lecy in “Crystallography and Crystal Chemistry of Materials with Layered Structure” (Boston, Reidel, 1976).

    Google Scholar 

  2. A. J. Mcevoy, A. Parker, K. Solt and R. Bicchsel, Thin Solid Films 15 (1980) 69.

    Google Scholar 

  3. A. Sequra Solar Energy Mater. Solar Cells 2 (1980) 159.

    Google Scholar 

  4. G. Micocci, A. Tepore and R. Rella, Phys. Stat. Sol. 148 (1995) 431.

    Google Scholar 

  5. D. Manno, M. Di Giulio, T. Siciliano, E. Filippo and A. Serra J. Phys. D: Appl. Phys. 34 (2001) 2097.

    Google Scholar 

  6. M. A. Kenway, A. F. El-Shazly, M. A. Afifi, H. A. Zayed and H. A. El-Zahid, Thin Solid Films 200 (1991) 205.

    Google Scholar 

  7. V. M. Koshkin, L. P. Galchinetskii, V. M. Kulik and B. I. Minkove, Solid State Commun. 13 (1973) 1.

    Google Scholar 

  8. M. Balkanski, P. Gomes and R. F. Wallis, Phys. Stat. Sol. B 175 (1996) 194.

    Google Scholar 

  9. S. A. Ei-Hakim, F. A. Ei-Wahab, A. S. Mohamed and M. F. Kotkata, Phys. Stat. Sol. A 198 (2003) 128.

    Google Scholar 

  10. S. M. El-Sayed, Vacuum 65 (2002) 177.

    Google Scholar 

  11. A. F. Qasrawi, I. Gunal, and C. Ercelebi, Cryst. Res. Technol. 35 (2000) 1077.

    Google Scholar 

  12. A. F. Qasrawi, M. Parlak, C. Ercelebi and I. Gunal, J. Mater. Sci.: Mater. Electr. 12 (2001) 473.

    Google Scholar 

  13. C. Julien, A. Khelfa and N. Benramdane, J. Mater. Sci. 30 (1995) 4890.

    Google Scholar 

  14. M. Parlak, C. Ercelebi, I. Gunal, Z. Salaeva and K. Allakhverdiev, Thin Solid Films 258 (1995) 86.

    Google Scholar 

  15. M. A. Afifi, A. E. Bekheet, E. Abd Elwahhab and H. E. Atyia, Vacuum 61 (2001) 9.

    Google Scholar 

  16. B. Thomas and T. R. N. Kutty, Phys. Stat. Sol. A 119 (1990) 127.

    Google Scholar 

  17. Roughieh Rousina and G. K. Shivakumar, Thin Solid Films 16 (1973) 175.

    Google Scholar 

  18. N. F. Mott and E. A. Davis in “Electronics Process in Non-Crystalline Materials” (Clarendon Press, Oxford, 1971).

    Google Scholar 

  19. S. R. Ovshinsky and D. Alder, Contemp. Phys. 19 (1978) 109.

    Google Scholar 

  20. M. L. Theye, Proceedings of the 5th International Conference on Amorphous and Liquid Semiconductors, Vol. 1, Garmischpartenkirchen, 1973, p. 479.

  21. J. Tauc, in “Amorphous and Liquid Semiconductors”, edited by J. Tauc (Plenum Press, New York, 1974).

    Google Scholar 

  22. R. A. Smith, Phil. Mag. Suppl. 2 (1953) 81.

    Google Scholar 

  23. S. Chaudhuri, S. K. Biswas, A. Choudhury and K. Goswami, J. Non-Cryst. Solids 54 (1983) 179.

    Google Scholar 

  24. M. Di Giulio, D. Manno, R. Rella, P. Siciliano and A. Tepore, Solar Energy Mater. 15 (1987) 209.

    Google Scholar 

  25. J. C. Bernede, S. Marsillac, A. Conon and A. Godoy, J. Phys.: Condens. Mater. 8 (1996) 3439.

    Google Scholar 

  26. C. Julien, M. Eddreif, K. Kambas and M. Balkanski, Thin Solid Films 137 (1986) 27.

    Google Scholar 

  27. J. Y. W. Seto, J. Appl. Phys. 46 (1975) 5247.

    Google Scholar 

  28. M. V. Garcia-Cuenca, J. L. Morenza and J. Esteve, ibid. 56 (1984) 1738.

    Google Scholar 

  29. D. K. Paul and S. S. Mitra, Phys. Rev. Lett. 31 (1973) 1000.

    Google Scholar 

  30. V. Ambegaokar, B. I. Halperin and J. S. Langer, Phys. Rev. 34 (1972) 2612.

    Google Scholar 

  31. M. Thamilselvan, K. Premnazer, D. Mangalaraj and Sa. K. Narayandass, Physica B 337 (2003) 404.

    Google Scholar 

  32. M. A. Lampert and P. Mark, in “Current Injection in Solids” (Academic, New York, 1970).

    Google Scholar 

  33. A. E. Rakhshani, J. Appl. Phys. 69 (1991) 2365.

    Google Scholar 

  34. M. A. Lampert, Rep. Prog. Phys. 27 (1964) 329.

    Google Scholar 

  35. C. T. Lynch, “Practical Handbook of Materials Science” (CRC, Boca Raton, 1989).

    Google Scholar 

  36. R. D. Gould and M. S. Rahman, J. Phys. D: Appl. Phys. 14 (1981) 79.

    Google Scholar 

  37. R. D. Gould and B. A. Carter, ibid. 16 (1983) L201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, C., Gopal, S., Thamilselvan, M. et al. Space charge limited current, variable range hopping and mobility gap in thermally evaporated amorphous InSe thin films. Journal of Materials Science: Materials in Electronics 15, 787–792 (2004). https://doi.org/10.1023/B:JMSE.0000045300.00451.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000045300.00451.51

Keywords

Navigation