Skip to main content
Log in

Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first-principle pseudopotential method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronic band calculations of ZnO doped with Li, Al, Ga, In, Si, Ge, Y, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu have been done within a framework of local density approximation, and partial densities of states (PDOSs) of dopants have been evaluated. PDOS of Al(Ga, In) of ZnO : Al(Ga, In) has delocalized nature, which is considered to be responsible for good conductivity of Al-doped ZnO. PDOS values of Cu and Li of ZnO : Cu and ZnO : Li are quite small at their Fermi levels (EFs), and this may be one of the possible reasons for their insulating nature as well as the compensation effects. PDOS values of Si and Ge of ZnO : Si and ZnO : Ge at their EFs are relatively large but are less delocalized compared to that of ZnO : Al(Ga, In). As for ZnO : Y, ZnO : Ti, and ZnO : V, PDOS values of Y(Ti, V) are small at their EFs. ZnO : Cr and ZnO : Mn have isolated impurity levels between the energy gap of ZnO and their EFs are located on these levels, seemingly resulting in poor conductivities. EFs of ZnO : Fe(Co, Ni) are located near the top of the valence band, and PDOS values of Fe(Co, Ni) at their EFs are relatively large. Their semiconducting nature might be caused by strong correlation between electrons which is beyond the description of a band calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landolt-Boernstein, in Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung (Springer-Verlag, Berlin, 1982) New Series, III-17b.

    Google Scholar 

  2. T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phys. Part 1 23 (1984) L280.

    Google Scholar 

  3. J. Hu and R. G. Gordon, J. Appl. Phys. 71 (1992) 880.

    Google Scholar 

  4. H. Sato, T. Minami, S. Takata, T. Miyata and M. Ishii, Thin Solid Films 236 (1993) 14.

    Google Scholar 

  5. B. Szyszka, ibid. 351 (1999) 164.

    Google Scholar 

  6. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong and H. W. White, J. Cryst. Growth 216 (2000) 330.

    Google Scholar 

  7. M. Joseph, H. Tabata and T. Kawai, Jpn. J. Appl. Phys. 389 (1999) L1205.

    Google Scholar 

  8. Y. Yan, S. B. Zhang and S. T. Pantelides, Phys. Rev. Lett. 86 (2001) 5723.

    Google Scholar 

  9. M. Joseph, H. Tabata and T. Kawai, Appl. Phys. Lett. 74 (1999) 2534.

    Google Scholar 

  10. T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura and T. Ito, Jpn. J. Appl. Phys. 40 (2001) 5615.

    Google Scholar 

  11. H. Satoh, K. Kudoh, K. Yoshio, T. Yamazaki, K. Matsuki, I. Shimono, N. Sakagami and A. Onodetra, Ferroelectrics 264 (2001) 1797.

    Google Scholar 

  12. A. Hartmann, M. K. Puchert and R. N. Lamb, Surf. Interfac. Anal. 24 (1996) 671.

    Google Scholar 

  13. Y. Imai, A. Watanabe and I. Shimono, J. Mater. Sci.: Mater. Electr. 14 (2003) 149.

    Google Scholar 

  14. T. Yamamoto and H. Katayama-Yoshida, Physical B 302/303 (2001) 155.

    Google Scholar 

  15. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Modern Phys. 64 (1992) 1045.

    Google Scholar 

  16. Y. Imai, M. Mukaida and T. Tsunoda, Thin Solid Films 381 (2001) 176.

    Google Scholar 

  17. J. Tani and H. Kido, J. Solid State Chem. 163 (2002) 248.

    Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.

    Google Scholar 

  19. K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79 (2001) 988.

    Google Scholar 

  20. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188.

    Google Scholar 

  21. E. H. Kisi and M. M. Elcombe, Acta Crystallogr. 45C (1989) 1867.

    Google Scholar 

  22. C. H. Park, S. B. Zhang and S. H. Wei, Phys. Rev. B 66 (2002) Art No. 073202.

  23. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and J. Tanaka, J. Appl. Phys. 90 (2001) 824.

    Google Scholar 

  24. H. Sato, T. Minami and S. Takata, J. Vac. Sci. Technol. A 11 (1993) 2975.

    Google Scholar 

  25. T. Minami, T. Yamamoto and T. Miyata, Thin Solid Films 366 (2000) 63.

    Google Scholar 

  26. Y. R. Park and K. J. Kim, Solid State Commun. 123 (2002) 147.

    Google Scholar 

  27. H. Saeki, H. Tabata and T. Kawai, ibid. 120 (2001) 439.

    Google Scholar 

  28. J. Han, P. Q. Mantas and A. M. R. Senos, J. Eur. Ceram. Soc. 21 (2001) 1883.

    Google Scholar 

  29. M. De La, L. Olvera, A. Maldonado, Y. Matsumoto, R. Asomoza, M. Melendez-Lira and D. R. Acosta, J. Vac. Sci. Technol. A 19 (2001) 2097.

    Google Scholar 

  30. K. Sasaki, A. Fukiuyama, T. Toyoda and T. Ikari, Jpn. J. Appl. Phys. Part 1 41 (2002) 3371.

    Google Scholar 

  31. A. E. Jimenez-Gonzalez, J. Solid State Chem. 128 (1997) 176.

    Google Scholar 

  32. Y.-Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow and H. Koinuma, J. Appl. Phys. 90 (2001) 4246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, Y., Watanabe, A. Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first-principle pseudopotential method. Journal of Materials Science: Materials in Electronics 15, 743–749 (2004). https://doi.org/10.1023/B:JMSE.0000043423.16928.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000043423.16928.56

Keywords

Navigation