Skip to main content
Log in

Some mechanical properties of Sn–3.5 Ag eutectic alloy at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The eutectic alloy Sn–3.5 wt % Ag has been examined as one of the lead-free solder alloys. Microhardness tests as a function of temperature were performed to calculate the effective activation energy of the solder alloy Sn–Ag and compared with the pure elements Sn and Ag. Various creep parameters such as, exponent ntr and the parameter β in the transient creep stage and the values of the stress exponent n from the steady-state stage were calculated under different constant applied stresses at different working temperatures. The structure changes of the alloy were reported before and after creep test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak (ed), “Binary alloy phase diagrams”, 2nd edn (ASM International, 1990).

  2. D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto, J. Electron. Mater. 26 (1997) 883.

    Google Scholar 

  3. Report Lead-Free Solders, “NASA Part and Packaging Program Goddard Space Flight Center Greenbelt” (Maryland, 1996) http://nepp.nasa.gov/.

  4. W. D. Callister, Jr., “Materials Science and Engineering -An Introduction”, 3rd edn (John Wiley and Sons, New York, 1994) p. 130.

    Google Scholar 

  5. M. McCormack and S. Jon, J. Electron. Mater. 24 (1994) 635.

    Google Scholar 

  6. Yu. A. Geller and A. G. Rakhshtadt, “Science of Material” (Mir Publishers, Moscow, 1977).

    Google Scholar 

  7. S. N. Salama and H. A. El-Batal, J. Non-Cryst. Solids 168 (1994) 179.

    Google Scholar 

  8. H. Buckle, Met. Rev. 4 (1959) 49.

    Google Scholar 

  9. I. S. Virk, M. B. Winnicka and R. A. Varin, Scr. Metall. Mater. 24 (1990) 2181.

    Google Scholar 

  10. F. A. McClintock and A. S. Argon, “Mechanical Behavior of Materials”, Sec. 13.5 (Addison-Wesley, Reading, MA, 1966) p. 458.

    Google Scholar 

  11. M. A. Meyers and K. M. Chawla, “Mechanical Metallurgy-Principles and Applications” (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  12. G. E. Dieter, “Mechanical Metallurgy” (McGraw-Hill Book Co., New York, 1986).

    Google Scholar 

  13. M. Braunovic, in Proceedings of the International Symposium on Science Hardness Testing and its Research Applications, Detroit, USA, October, 1971.

  14. H. O'Neill and M. Met Fim, “Hardness Measurement of Metals and Alloys” (Chapman and Hall, London, EC4, 1967).

    Google Scholar 

  15. M. J. Davidson, M. Biberger and A. K. Mukherjee, Scr. Metall. Mater. 27 (1992) 1829.

    Google Scholar 

  16. V. I. Igoshev and J. I. Kleiman, J. Electron. Mater. 29 (2000) 244.

    Google Scholar 

  17. N. F. Mott and F. R. Nabarro, in Proceedings of the Bristol Conference on Strength of Solids, Phys. Soc., 1984.

  18. N. F. Mott, Phil. Mag. 44 (1953) 742.

    Google Scholar 

  19. J. Friedel, “Dislocations” (Pergamon Press, London, 1964); M. T. MOSTAFA, Phys. Status Solidi. A 163 (1997) 39.

    Google Scholar 

  20. M. Hansen and K. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) p. 1217.

    Google Scholar 

  21. M. S. Saker, A. A. El-Shazly, M. M. Mostafa, H. A. El-Sayed and A. A. Mohamed, Czech. J. Phys. B 38 (1988) 1255.

    Google Scholar 

  22. J. H. Lau, “Thermal Stress and Strain in Microelectronics Packaging” (Van Nostrand Reinhold, New York, NY, 1993).

    Google Scholar 

  23. J. E. Bird, A. K. Mukherjee and J. E. Dorn, “Quantitative relation Between properties and Microstructure” (Israel University Press, 1969) p. 255.

  24. E. George Dieter, “Mechanical Metallurgy” (McGraw-Hill, New York, 1988).

    Google Scholar 

  25. H. Mavoori, J. Chins, S. Vaynman, B. Moran, L. Keer and M. Fine, J. Electron. Mater. 26 (1997) 783.

    Google Scholar 

  26. M. M. El-Bahay, M. E. El Mossalamy, M. Mahdy and A. A. Bahgat, Phys. Status Solidi. A 198 (2003) 76.

    Google Scholar 

  27. M. H. N. Beshai, G. H. Deaf, A. M. Abd El Khalekh, G. Graiss and M. A. Kenawy, Phys. Status Solidi. A 161 (1997) 65.

    Google Scholar 

  28. K. Linga Murty, F. A. Mohamed and J. E. Dorn, Acta Met. 20 (1972) 1009.

    Google Scholar 

  29. G. S. Al-Ganainy, M. T. Mostafa and M. R. Nagy, Phys. Status Solidi. A 165 (1998) 185.

    Google Scholar 

  30. R. Darveau and K. Banerji, IEEE Trans. Components, Hybrieds, and Manuf. Technol. 15 (1992) 1013.

    Google Scholar 

  31. W. Yang, L. E. Felton and R. W. Messler, J. Electron. Mater. 24 (1995) 1465.

    Google Scholar 

  32. K. L. Murry, H. Yang, P. Deane and P. Magill, in Proceedings of the Interpack'97: Advances in Electronics Packaging, 1997 (ASME International, New York, 1997).

    Google Scholar 

  33. M. D. Mathew, S. Movva, H. Yang and K. Murry, “Creep Behavior of Advanced Materials for the 21st Century”, edited by R. S. Mishra and A. K. Mukherije (TMS, Warrendale, PA, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bahay, M.M., El Mossalamy, M.E., Mahdy, M. et al. Some mechanical properties of Sn–3.5 Ag eutectic alloy at different temperatures. Journal of Materials Science: Materials in Electronics 15, 519–526 (2004). https://doi.org/10.1023/B:JMSE.0000032586.62418.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000032586.62418.6c

Keywords

Navigation