Skip to main content
Log in

Preparation and characterization of sol–gel derived glasses in the ternary Na2O–Al2O3–P2O5 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new sol–gel synthesis route to organic free Na2O–Al2O3–P2O5 xerogels was developed. These xerogels contain P2O5 up to 67.5 mole % and Al2O3 up to 20 mole % and could be melted to homogeneous glasses in air at significantly lower temperatures than those applied using the conventionally melting method. Aluminum isopropoxide dissolved in isopropanol, orthophosphoric acid dissolved in isopropanol and sodium nitrate were used as precursors for Al2O3, P2O5 and Na2O respectively. Clear stable alcoholic solutions were prepared in the presence of HNO3. Addition of HNO3 in the concentration used, enabled homogeneous mixing of the precursors, controlled over the gelation step and prevented the fast precipitation of the AlPO4 crystalline phase which breaks down the glass formation ability. The sol–gel route developed was investigated using different analytical tools. Differential thermal analysis (DTA) coupled with thermo-gravimetric (TG) analysis indicated that neither organic residues nor sodium nitrate residues were present in the dried gels after gelation. Fourier transform infrared spectroscopy (FTIR) showed the presence of all characteristic phosphate groups and bonds in the dried gels, especially the P=O and the P–O–P bonds. Solid state 31P Magic angle spinning nuclear magnetic resonance (MAS NMR) revealed the formation of Q2 chain-like polyphosphates of variable polymerization degrees in the dried gels. Solid state 27Al MAS NMR revealed that octahedrally coordinated Al is the preferred moiety in the dried gels. However, powder X-ray diffraction (XRD) investigation indicated the presence of crystalline Q1 oligomeric pyrophosphate species in the dried gels. Isotropic chemical shifts belonging to these pyrophosphate species were also recorded in the 31P MAS NMR spectra. Characterization of the prepared glasses showed that their properties are in very good agreement with those glasses prepared by the conventionally melting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. VolfGlass Science and Technology, Vol. 7 (Elsevier, 1984).

  2. H. Schmidt, J. Non-Cryst. Solids 100 (1988) 51.

    Google Scholar 

  3. H. Schmidt and H. Wolter, ibid. 121 (1990) 428.

    Google Scholar 

  4. J. Livage and C. Sanchez, ibid. 145 (1992) 11.

    Google Scholar 

  5. L. Coury, F. Babonneau, M. Henry and J. Livage, C.R. Acad. Sci. Paris 309 Ser. II (1989) 799.

    Google Scholar 

  6. S. Prabakar, K. J. Rao and C. N. R. Rao, Mater. Res. Bull. 26 (1991) 805.

    Google Scholar 

  7. M. A. Harmer and A. J. Vega, Solid State Nucl. Magn. Reson. 5 (1995) 35.

    Google Scholar 

  8. DIN 52 324, Prüfung von Glas, Bestimmung der Transformationstemperatur (1984).

  9. N. N. Greenwood and A. EarnshawChemistry of the Elements(Pergamon Press, Oxford, 1984).

    Google Scholar 

  10. A. F. Holleman and E. WibergLehrbuch der Anorganischen Chemie(Walter de Gruyter, Berlin, 1985).

    Google Scholar 

  11. H. Suzuki, H. Saito and T. Hayashi, J. Mater. Sci. 19 (1984) 396.

    Google Scholar 

  12. B. Bridge and N. D. Patel, J. Non-Cryst. Solids 91 (1987) 27.

    Google Scholar 

  13. E. A. Hayri and M. Greenblatt, ibid. 94 (1987) 387.

    Google Scholar 

  14. E. A. Hayri, M. Greenblatt, P. Pruna and R. Gerhardt, ibid. 111 (1989) 167.

    Google Scholar 

  15. L. Sheng and J. Zarzycki, ibid. 112 (1989) 428.

    Google Scholar 

  16. M. Laczka and M. Ciecinska, J. Sol-Gel Sci. Technol. 3 (1994) 219.

    Google Scholar 

  17. L. Montagne, S. Donze and G. Palavit, Fundamentals of Glass Science and Technology, 3rd ESG Conference (1995).

  18. R. J. Kirkpatrick and R. K. Brow, Solid State Nucl. Magn. Reson. 5 (1995) 9.

    Google Scholar 

  19. R. K. Brow, R. J. Kirkpatrick and G. L. Turner, J. Am. Ceram. Soc. 76 (1993) 919.

    Google Scholar 

  20. R. K. Brow, ibid. 76 (1993) 913.

    Google Scholar 

  21. B. E. Yoldas, Am. Ceram. Soc. Bull. 54 (1975) 286; and Am. Ceram. Soc. Bull. 54 (1975) 289.

    Google Scholar 

  22. F. Gomez, P. Vast, Ph. Llewellyn and F. Rouquerol, J. Non-Cryst. Solids 222 (1997) 415.

    Google Scholar 

  23. J. Van WazerPhosphorus and its Compounds, Vols. 1 and 2 (Wiley Interscience, NY, 1951).

    Google Scholar 

  24. N. J. Kreidl and W. A. Weyl, J. Am. Ceram. Soc. 24 (1941) 372.

    Google Scholar 

  25. D. E. Day and G. E. Rindone, ibid. 45 (1962) 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abo-Naf, S.M., Ghoneim, N.A. & EI-Batal, H.A. Preparation and characterization of sol–gel derived glasses in the ternary Na2O–Al2O3–P2O5 system. Journal of Materials Science: Materials in Electronics 15, 273–282 (2004). https://doi.org/10.1023/B:JMSE.0000024226.51362.de

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000024226.51362.de

Keywords

Navigation