Skip to main content
Log in

Sintering condition and PTCR characteristics of porous (Ba,Sr)(Ti,Sb)O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We fabricated porous (Ba,Sr)(Ti,Sb)O3 ceramics by adding potato-starch (1–20 wt %) and investigated the effects of sintering temperature (1300–1450 °C) and time (0.5–10 h) on the positive temperature coefficient of resistivity characteristics of the porous ceramics. The room-temperature electrical resistivity of the (Ba,Sr)(Ti,Sb)O3 ceramics decreased with increasing sintering temperature, while that of the ceramics increased with increasing sintering time. For example, the room-temperature electrical resistivity of the (Ba,Sr)(Ti,Sb)O3 ceramics for the samples sintered at 1300 °C and 1450 °C for 1 h is 6.8×103 and 5.7×102 Ω cm, respectively, while that of the ceramics is 6.5×102 and 1.3×107 Ω cm, respectively, for the samples sintered at 1350 °C for 0.5 h and 10 h. In order to investigate the reason for the decrease and increase of room-temperature electrical resistivity of the samples with increasing sintering temperature and time, the average grain size, porosity, donor concentration of grains (N d), and electrical barrier height of grain boundaries (Φ) of the samples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nagamoto, H. Kagotani and T. Okubo, J. Am. Ceram. Soc. 76 (1993) 2053.

    Google Scholar 

  2. H. Emoto and J. Hojo, J. Ceram. Soc. Jpn. 100 (1992) 555.

    Google Scholar 

  3. I. C. Ho, J. Am. Ceram. Soc. 77 (1994) 829.

    Google Scholar 

  4. I. C. Ho and H. L. Hsieh, ibid. 76 (1993) 2385.

    Google Scholar 

  5. H. F. Cheng, T. F. Lin and C. T. Hu, ibid. 76 (1993) 827.

    Google Scholar 

  6. B. C. Lacourse and V. R. W. Amarakoon, ibid. 78 (1995) 3352.

    Google Scholar 

  7. O. Saburi, J. Phys. Soc. Jpn. 4 (1959) 1159.

    Google Scholar 

  8. W. Heywang, J. Mater. Sci. 6 (1971) 1214.

    Google Scholar 

  9. G. H. Jonker, Solid State Electron. 7 (1964) 895.

    Google Scholar 

  10. J. Daniels and R. Wernike, Philips Res. Rep. 31 (1976) 544.

    Google Scholar 

  11. T. R. N. Kutty, P. Murugaraj and N. S. Gajbhiye, Mater. Res. Bull. 20 (1985) 565.

    Google Scholar 

  12. W. Heywang, J. Am. Ceram. Soc. 47 (1964) 484.

    Google Scholar 

  13. W. Heywang, Solid State Electron. 3 (1961) 51.

    Google Scholar 

  14. T. F. Lin, C. T. Hu and I. N. Lin, J. Am. Ceram. Soc. 73 (1990) 531.

    Google Scholar 

  15. I. C. Ho and S. L. Fu, ibid. 75 (1992) 728.

    Google Scholar 

  16. N. Kataoka, K. Hayashi, T. Yamamoto, Y. Sugawara, Y. Ikuwara and T. Sakuma, ibid. 81 (1998) 1961.

    Google Scholar 

  17. T. Miki, A. Fujimoto and S. Jido, J. Appl. Phys. 83 (1998) 1592.

    Google Scholar 

  18. J.-S. Kim and S.-J. L. Kang, J. Am. Ceram. Soc. 82 (1999) 1196.

    Google Scholar 

  19. K. Hayashi, T. Yamamoto, Y. Ikuwara and T. Sakuma, ibid. 83 (2000) 2684.

    Google Scholar 

  20. S. Y. Yoon, K. H. Lee and H. Kim, ibid. 83 (2000) 2463.

    Google Scholar 

  21. M. Kahn, Am. Ceram. Soc. Bull. 50 (1971) 676.

    Google Scholar 

  22. G. Er, S. Ishida and N. Takeuchi, J. Ceram. Soc. Jpn. 106 (1998) 470.

    Google Scholar 

  23. N. Kurata and M. Kuwabara, ibid. 106 (1998) 1092.

    Google Scholar 

  24. S. Tashiro, A. Osonoi and H. Igarashi, ibid. 107 (1999) 15.

    Google Scholar 

  25. J. G. Fagan and V. R. W. Amarakoon, Am. Ceram. Soc. Bull. 72 (1993) 69.

    Google Scholar 

  26. J. B. Macchesney and J. F. Potter, J. Am. Ceram. Soc. 48 (1965) 81.

    Google Scholar 

  27. S.-M. Su, L.-Y. Zhang, H.-T. Sun and X. Yao, ibid. 77 (1994) 2154.

    Google Scholar 

  28. T. R. Shrout, D. Moffatt and W. Huebner, J. Mater. Sci. 26 (1991) 145.

    Google Scholar 

  29. J. H. Lee, J. J. Kim and S. H. Cho, in “Research Report” (Kyungpook National University, Korea, 1990) p. 115.

    Google Scholar 

  30. T. Takahashi, Y. Nakano and N. Ichinose, J. Ceram. Soc. Jpn. 98 (1990) 879.

    Google Scholar 

  31. M. Kuwabara, J. Am. Ceram. Soc. 64 (1981) C–170.

    Google Scholar 

  32. K. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys. 50 (1979) 4475.

    Google Scholar 

  33. T. J. Hwang and G. M. Choi, J. Am. Ceram. Soc. 76 (1993) 766.

    Google Scholar 

  34. Y. C. Yeh and T. Y. Tsengr, J. Mater. Sci. Lett. 7 (1988) 766.

    Google Scholar 

  35. T. Ishihara, K. Kometani, Y. Mizuhara and Y. Takita, J. Am. Ceram. Soc. 75 (1992) 613.

    Google Scholar 

  36. A. C. Caballero, M. Villegas, J. F. Fernandez, M. Viviani, M. T. Buscaglia and M. Leoni, J. Mater. Sci. Lett. 18 (1999) 1297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JG., Tai, WP., Lee, JM. et al. Sintering condition and PTCR characteristics of porous (Ba,Sr)(Ti,Sb)O3 . Journal of Materials Science: Materials in Electronics 15, 241–245 (2004). https://doi.org/10.1023/B:JMSE.0000012462.83222.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000012462.83222.aa

Keywords

Navigation