Skip to main content
Log in

Deformation micromechanics of a thermoplastic-thermoset interphase of epoxy composites reinforced with poliethylene fiber

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The polyethylene fibre is one of the strongest man-made materials; its strength is based on its high crystalinity order. Nevertheless, due to the Polyethylene chemical nature, it shows a low reactivity, which limits its use for composite materials, especially with thermoset matrices like the Epoxy resin. The present work uses Raman Spectroscopy to monitor the loading and failure of a thermoplastic-thermoset interface. Pull-out specimens were prepared with Spectra 1000 Polyethylene fibre embedded in a epoxy resin block; the fibre extraction was performed in a stepwise fashion and with the aid of a micro-Raman, spectra were taken along the interface through out the whole process. The technique allowed to measure the interface strength and to monitor the propagation of the debonding front up to total failure. Some results correspond to specimens were the interface was improved by changing the surface chemistry of the thermoplastic fibre to make it more compatible to the thermoset matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Broutman, “Interfaces in Composites,” ASTMSSTP452 (1969) p. 27.

  2. F. P. M. Mercx and P. J. Lemstra, Polym. Commun. 31(1990) 252.

    Google Scholar 

  3. B. Miller, P. Muri and L. Rebenfeld, Comp. Sci. Techn. 28(1987) 17.

    Google Scholar 

  4. H. D. Wagner, E. Gallis and E. Wiesel, J. Mater. Sci. 28(1993) 2238.

    Google Scholar 

  5. M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Midrich, D. L. Galdwell, L. T. Drzal, M. Nardin, H. D. Wagner, L. D. Landro, A. Hampe, J. P. Armistead, M. Desaeger and I. Verpoest, Comp. Sci. Techn. 48(1993) 205.

    Google Scholar 

  6. G. DÉsarmot and J.-P. Favrre, ibid. 42(1991) 151.

    Google Scholar 

  7. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13(1965) 329.

    Google Scholar 

  8. A. Kelly and N. H. Macmillan, “Strong Solids” (Claredon Press, 1986).

  9. L. S. Penn and S. M. Lee, J. Comp. Techn. Res. 11(1989) 23.

    Google Scholar 

  10. M. R. Piggott, Comp. Interf. 1(1993) 211.

    Google Scholar 

  11. M. J. Pitkethly and J. B. Doble, Composites 21(1990) 389.

    Google Scholar 

  12. L. C. N. Boogh, R. J. Meier, H.-H. Kausch and B. K. Kip, J. Polym. Sci., Part B: Polym. Phys. 30(1992) 325.

    Google Scholar 

  13. Z.-F. Li and A. N. Netravali, J. Appl. Polym. Sci. 44(1992) 333.

    Google Scholar 

  14. D. T. Grubb and Z.-F. Li, J. Mater. Sci. 29(1994) 203.

    Google Scholar 

  15. A. K. Patrikis, M. C. Andrews and R. J. Young, Comp. Sci. Techn. 52(1994) 387.

    Google Scholar 

  16. D. J. Bannister, M. C. Andrews, A. J. Cervenka and R. J. Young, ibid. 53(1995) 411.

    Google Scholar 

  17. X. Yang, D. J. Bannister and R. J. Young, J. Amer. Ceram. Soc. 79(1996) 1868.

    Google Scholar 

  18. X. Gu, “Micromechanics of Model Carbon Fibre/Epoxy Resin Composites,” PhD Thesis, University of Manchester Institute of Science and Technology (UMIST) 1995.

    Google Scholar 

  19. B. J. Kip, M. C. P. Van Eijk and R. J. Meier, J. Polym. Sci.,Part B: Polym. Phys. 29(1991) 99.

    Google Scholar 

  20. J. A. H. M. Moonene, W. A. C. Roovers, R. J. Meier and B. J. Kip, J. Polym. Sci., Polym. Phys. 30(1992) 361.

    Google Scholar 

  21. D. T. Grubb and Z.-F. Li, Polymer 33(1992) 2587.

    Google Scholar 

  22. S. Van Der Zwaag, M. G. Northolt, R. J. Young, I. M. Robinson, C. Galiotis and D. N. Batchelder, Polym. Commun. 28(1987) 276.

    Google Scholar 

  23. R. P. Wool, R. S. Bretzlaff, B. Y. Li, C. H. Wang and R. H. Boyd, J. Poly. Sci.:Part B: Polym. Phys. 24(1986) 1039.

    Google Scholar 

  24. M. R. Piggott, “Load Bearing Fibre Composites” (Pergamon Press, Oxford, UK, 1980) p. 83.

    Google Scholar 

  25. P. S. Chua and M. R. Piggott, Comp. Sci. Techn. 22(1985) 33.

    Google Scholar 

  26. M. R. Piggott, ibid. 42(1991) 57.

    Google Scholar 

  27. T. Lacroix, B. Tilmans, R. Keunings, M. Desaeger and I. Verpoest, ibid. 43(1992) 379.

    Google Scholar 

  28. “Ciba-Geigy Data Sheet,” Publication No. s.90a, May, 1988.

  29. M. C. Andrews, “Stress Transfer in Aramid/Epoxy Model Composites,” PhD Thesis, University of Manchester Institute of Science and Technology (UMIST) 1994.

    Google Scholar 

  30. P. I. GonzÁlez-Chi, “Deformation Micromechanics in Polyethylene-Epoxy Fibre-Reinforced Composites,” PhD Thesis, University of Manchester Institute of Science and Technology (UMIST) 1994.

    Google Scholar 

  31. M. Nardin and I. M. Wood, Mater. Sci. Techn. 42(1991) 814.

    Google Scholar 

  32. S. Kumar, Ind. J. Fibre Textile Res. 16(1991) 52.

    Google Scholar 

  33. Z.-F. Li and D. T. Grubb, J. Mater. Sci. 29(1994) 189.

    Google Scholar 

  34. C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder, ibid. 19(1984) 3640.

    Google Scholar 

  35. C. Marotzke, Comp. Sci. Techn. 50 (1994) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Chi, P.I., Young, R.J. Deformation micromechanics of a thermoplastic-thermoset interphase of epoxy composites reinforced with poliethylene fiber. Journal of Materials Science 39, 7049–7059 (2004). https://doi.org/10.1023/B:JMSC.0000047550.18047.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000047550.18047.22

Keywords

Navigation