Skip to main content
Log in

Characterisation of fine-grained oxide ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A range of high resolution techniques have been used to characterise the grain boundary segregation behaviour of rare earth (RE) doped (La, Gd, Eu and Yb) alumina and spinel. TEM based techniques (HR-TEM, HAADF STEM and EDS) have been used to study the structure and chemistry of grain boundaries. The use of a HAADF detector in STEM provides atomic number contrast and easy identification of heavy (RE) segregants. This has been used to produce high resolution RE elemental maps, showing the width of the segregated region to be less than the size of the electron probe (1 nm) for all boundaries studied. EDS showed that within a 1 nm thick boundary region (an upper limit) the RE cations would account for 10 (±2)% and 15 (±2)% of the cation total in alumina and spinel respectively. Preliminary results from ultra-high resolution STEM (probe size ∼0.1 nm) suggest that, in spinel, the segregated region is actually composed of a much thinner continuous monolayer of RE atoms at the grain boundary. This is consistent with HR-TEM, which showed spinel grain boundaries possessed minimal grain boundary structural disorder.

AFM has been used to study the effect of RE grain boundary segregation on thermal grooving behaviour. The improvement in resolution that is achieved by operating in Tapping™ mode is shown to translate into an improved profile of the groove root. This has been used in conjunction with Electron Backscattered Diffraction (EBSD) to examine the relationship between grain boundary geometry and misorientation. The addition of RE dopants to alumina was found to significantly increase the size of grain boundary grooves. This can be attributed to the out-diffusion of RE segregants, an effect which compromises grain boundary energy calculations for materials with grain boundary segregation. AFM and EBSD are also used to relate anisotropic tribo-chemical polishing-wear with grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. HAYASHI, O. KOBAYASHI, S. TOYODA and K. MORINAGA, Mater. Trans. JIM 32(1991) 1024.

    Google Scholar 

  2. R. APTEZ and M. P. B. VAN BRUGGEN, J. Amer. Ceram. Soc. 86(2003) 480.

    Google Scholar 

  3. A. KRELL, Mater. Sci. Eng. A 245(1998) 277.

    Google Scholar 

  4. S. LARTIGUE, L. PRIESTER, F. DUPAU, P. GRUFFEL and C. CARRY, ibid. A 164(1993) 211.

    Google Scholar 

  5. J. CHO, C. M. WANG, J. M. RICKMAN and M. P. HARMER, Acta Mater. 47(1999) 4197.

    Google Scholar 

  6. Y. M. CHIANG and W. D. KINGERY, J. Amer. Ceram. Soc. 72(2) (1989) 271.

    Google Scholar 

  7. S. WILKES, Mater. World 11(3) (2003) 23.

    Google Scholar 

  8. J. K. FARRER, J. R. MICHAEL and C. B. CARTER,in "Electron Backscatter Diffraction in Materials Science," edited by A. J. Schwartz, M. Kumar and B. L. Adams (Kluwer Academic, 2000) p. 299.

  9. G. D. WEST, J. M. PERKINS and M. H. LEWIS, Key Eng. Mater. 264–268(2004) 801.

    Google Scholar 

  10. A. M. THOMPSON, K. K. SONI, H. M. CHAN, M. P. HARMER, D. B. WILLIAMS, J. M. CHABALA and R. LEVI-SETTI, J. Amer. Ceram. Soc. 80(2) (1997) 373.

    Google Scholar 

  11. R. F. COOK and A. G. SCHROTT, ibid. 71(1988) 50.

    Google Scholar 

  12. M. A. GÜLGÜN, R. VOYTOVYCH, I. MACLAREN, M. RÜHLE and R. M. CANNON, Interf. Sci. 10(2002) 99.

    Google Scholar 

  13. C. M. WANG, G. S. CARGILL III, H. M. CHAN and M. P. HARMER, Acta Mater. 48(2000) 2579.

    Google Scholar 

  14. H. YOSHIDA, Y. IKUHARA and T. SAKUMA, ibid. 50(2002) 2955.

    Google Scholar 

  15. J. BRULEY, J. CHO, H. M. CHAN, M. P. HARMER and J. M. RICKMAN, J. Amer. Ceram. Soc. 82(10) (1999) 2865.

    Google Scholar 

  16. D. B. WILLIAMS and C. B. CARTER,"Transmission Elec-tron Microscopy" (Plenum, New York, 1996)(a)p600, (b) p40.

    Google Scholar 

  17. S. J. PENNYCOOK, Annu. Rev. Mater. Sci. 22(1992) 22.

    Google Scholar 

  18. O. L. KRIVANEK, N. DELBY and A. R. LUPINI, Ultra-microscopy 78(1999) 1.

    Google Scholar 

  19. T. GEMMING, S. NUFER, W. KURTZ and M. RÜHLE, J. Amer. Ceram. Soc. 86(4) (2003) 590.

    Google Scholar 

  20. J. CHO, C. M. WANG, H. M. CHAN, J. M. RICKMAN and M. P. HARMER, J. Mater. Sci. 37(2002) 59.

    Google Scholar 

  21. A. RAVIKIRAN, J. Mater. Sci. Lett. 19(2000) 1041.

    Google Scholar 

  22. Idem., Tribol. Trans. 43(2000) 287.

    Google Scholar 

  23. D. M. SAYLOR and G. S. ROHRER, J. Amer. Ceram. Soc. 82(6) (1999) 1529.

    Google Scholar 

  24. W. SHIN, W. S. SEO and K. KOUMOTO, J. Eur. Ceram. Soc. 18(1998) 595.

    Google Scholar 

  25. U. D. SCHWARZ, H. HAEFKE, P. REIMANN and H. GUNTERODT, J. Microscopy 173(3) (1994) 183.

    Google Scholar 

  26. E. SAIZ, R. M. CANNON and A. P. TOMSIA, Acta Mater. 47(15) (1999) 4209.

    Google Scholar 

  27. J. M. DYNYS, R. L. COBLE, W. S. COBLENZ and R. W. CANNON,in"Sintering Processes," edited by G. C. Kuczynski (Plenum Press, New York, 1980) p. 391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, G.D., Perkins, J.M. & Lewis, M.H. Characterisation of fine-grained oxide ceramics. Journal of Materials Science 39, 6687–6704 (2004). https://doi.org/10.1023/B:JMSC.0000045600.77776.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000045600.77776.08

Keywords

Navigation