Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets


Projectile/target impact crater systems involving soda-lime glass/1100 aluminum, ferritic stainless steel/1100 aluminum, and tungsten carbide/1100 aluminum (corresponding to projectile densities of 2.2, 7.89, and ∼17 Mg (m3) at impact velocities ranging from 0.56 to 3.99 km/s were examined by light metallography, SEM, and TEM. Plots of crater depth/crater diameter ratio (p/D c) versus impact velocity exhibited anomalous humps with p/D c ranging from 0.8 to 5.5 between 1 and 2 km/s, with hypervelocity threshold or steady-state values of p/D c (>5 km/s) ranging from 0.4 to 1.0; with the p/D c values increasing with increasing projectile density in each case. This hump-shaped regime, with exaggerated target penetration depths, appears to occur because projectiles remain relatively intact and unfragmented. The crater geometry begins to change when the projectile fragmentation onset velocity (>2 km/s) is exceeded and fragmentation increases with increasing impact velocity. Computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries and correlated experimentally measured microhardness maps with simulated residual yield stress contour maps. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melting and solidification occurred at the crater wall, especially for hypervelocity impact (>5 km/s).

This is a preview of subscription content, log in to check access.


  1. 1.

    J. R. Baker, Int. J. Impact Engr. 17 (1995) 25.

    Article  Google Scholar 

  2. 2.

    R. P. Bernhard and F. H</del>Örz, ibid. 17 (1995) 69.

    Article  Google Scholar 

  3. 3.

    L. E. Murr, S. A. Quinones, E. Ferreyra, T. A. Ayala, O. L. Valerio, F. HÖrz and R. P. Bernhard, Mater. Sci. Engr.A 256 (1998) 166.

    Article  Google Scholar 

  4. 4.

    O. L. Valerio, V. S. Hernandez, S. A. Quinones, L. E. Murr and F. HÖrz, in "Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena", edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier Science Ltd., Amsterdam, 2001) Chap. 49, p. 383.

    Google Scholar 

  5. 5.

    H. A. Zook, Lunar and Planetary Sci. 21 (1990) 112.

    Google Scholar 

  6. 6.

    L. E. Murr and W. H. Kinard, Amer. Scient. 81 (1993) 152.

    Google Scholar 

  7. 7.

    J. A. M. Mcdonnel (ed.), "Hypervelocity Impact in Space" (Univ. of Kent, Canterbury, U.K., 1992).

    Google Scholar 

  8. 8.

    J. A. Joselyn and E. C. Whipple, Amer. Scient. 78 (1990) 126.

    Google Scholar 

  9. 9.

    N. Mcbride, S. F. Green and J.A. Mcdonnel, Adv. Space Res. 23(1) (1999) 73.

    Article  Google Scholar 

  10. 10.

    S. A. Quinones and L. E. Murr, Phys. Stat. Sol. (a) 166 (1998) 763.

    Article  Google Scholar 

  11. 11.

    N. K. Birnbaum, M. Cowler, M. Itoh, M. Katayama and H. Obata, AUTODYN-An Interactive, Nonlinear Dynamic Analysis Program for Microcomputers Through Supercomputers, 9th Int. Conf. on Structural Mechanics in Reactive Technology, Lausanne, August, 1987.

  12. 12.

    C. T. Hayhurst, H. J. Ranson, D. J. Gardner and N. K. Birnbaum, Int. J. Impact Engr. 17 (1995) 375.

    Article  Google Scholar 

  13. 13.

    G. R. Johnson and W. H. Cook, A. Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and Temperatures, in Proc. 7th Int. Symposium on Ballistics, The Hague, 1983.

  14. 14.

    E. A. Taylor, K. T. Sembells, C. J. Hayhurst, L. Kay and M. J. Burchell, Int. J. Impact Engr. 23 (1999) 895.

    Article  Google Scholar 

  15. 15.

    M. A. Meyers, "Dynamic Behavior of Materials" (Wiley, NY, 1994).

    Google Scholar 

  16. 16.

    M. H. Rice, R. G. Mcqueen and J. M. Walsh, Solid State Phys. 6 (1958) 1.

    Google Scholar 

  17. 17.

    R. G. Mcqueen, S. P. Marsh, J. W. Taylor, J. N. Fritz and W. J. Carter, in "The Equation of State of Solids from Shock Wave Studies, High Velocity Impact Phenomena", edited by R. Kinslow (Academic Press, NY, 1970) p. 230.

    Google Scholar 

  18. 18.

    T. H. See, M. K. Allbrooks, D. R. Atkinson, C. R. Simon and M. E. Zolensky, Meteroid and Debris Impact Features Documented on The Long Duration Exposure Facility, NASA-JSC Report No. 24608, 1990.

  19. 19.

    L. E. Murr, C.-S. Niou, S. A. Quinones and K. S. Murr, Scripta Metall. et Mater. 27 (1992) 101.

    Article  Google Scholar 

  20. 20.

    D. E. Grady and M. E. Kipp, Impact Failure and Fragmentation Properties of Metals, Sandia Report SAND98-0387 Sandia National Laboratories, Albuquerque, New Mexico, March, 1998.

  21. 21.

    J. H. G. Livingstone, K. Verolme and C. J. Hayhurst, Int. J. Impact Engr. 26 (2001) 453.

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valerio-Flores, O.L., Murr, L.E., Hernandez, V.S. et al. Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets. Journal of Materials Science 39, 6271–6289 (2004). https://doi.org/10.1023/B:JMSC.0000043597.72588.d1

Download citation


  • Impact Velocity
  • Impact Crater
  • Crater Wall
  • Hypervelocity Impact
  • Validate Computer Simulation