Journal of Materials Science

, Volume 39, Issue 20, pp 6271–6289 | Cite as

Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets

  • O. L. Valerio-Flores
  • L. E. Murr
  • V. S. Hernandez
  • S. A. Quinones


Projectile/target impact crater systems involving soda-lime glass/1100 aluminum, ferritic stainless steel/1100 aluminum, and tungsten carbide/1100 aluminum (corresponding to projectile densities of 2.2, 7.89, and ∼17 Mg (m3) at impact velocities ranging from 0.56 to 3.99 km/s were examined by light metallography, SEM, and TEM. Plots of crater depth/crater diameter ratio (p/Dc) versus impact velocity exhibited anomalous humps with p/Dc ranging from 0.8 to 5.5 between 1 and 2 km/s, with hypervelocity threshold or steady-state values of p/Dc (>5 km/s) ranging from 0.4 to 1.0; with the p/Dc values increasing with increasing projectile density in each case. This hump-shaped regime, with exaggerated target penetration depths, appears to occur because projectiles remain relatively intact and unfragmented. The crater geometry begins to change when the projectile fragmentation onset velocity (>2 km/s) is exceeded and fragmentation increases with increasing impact velocity. Computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries and correlated experimentally measured microhardness maps with simulated residual yield stress contour maps. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melting and solidification occurred at the crater wall, especially for hypervelocity impact (>5 km/s).


Impact Velocity Impact Crater Crater Wall Hypervelocity Impact Validate Computer Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Baker, Int. J. Impact Engr. 17 (1995) 25.CrossRefGoogle Scholar
  2. 2.
    R. P. Bernhard and F. H</del>Örz, ibid. 17 (1995) 69.CrossRefGoogle Scholar
  3. 3.
    L. E. Murr, S. A. Quinones, E. Ferreyra, T. A. Ayala, O. L. Valerio, F. HÖrz and R. P. Bernhard, Mater. Sci. Engr.A 256 (1998) 166.CrossRefGoogle Scholar
  4. 4.
    O. L. Valerio, V. S. Hernandez, S. A. Quinones, L. E. Murr and F. HÖrz, in "Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena", edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier Science Ltd., Amsterdam, 2001) Chap. 49, p. 383.Google Scholar
  5. 5.
    H. A. Zook, Lunar and Planetary Sci. 21 (1990) 112.Google Scholar
  6. 6.
    L. E. Murr and W. H. Kinard, Amer. Scient. 81 (1993) 152.Google Scholar
  7. 7.
    J. A. M. Mcdonnel (ed.), "Hypervelocity Impact in Space" (Univ. of Kent, Canterbury, U.K., 1992).Google Scholar
  8. 8.
    J. A. Joselyn and E. C. Whipple, Amer. Scient. 78 (1990) 126.Google Scholar
  9. 9.
    N. Mcbride, S. F. Green and J.A. Mcdonnel, Adv. Space Res. 23(1) (1999) 73.CrossRefGoogle Scholar
  10. 10.
    S. A. Quinones and L. E. Murr, Phys. Stat. Sol. (a) 166 (1998) 763.CrossRefGoogle Scholar
  11. 11.
    N. K. Birnbaum, M. Cowler, M. Itoh, M. Katayama and H. Obata, AUTODYN-An Interactive, Nonlinear Dynamic Analysis Program for Microcomputers Through Supercomputers, 9th Int. Conf. on Structural Mechanics in Reactive Technology, Lausanne, August, 1987.Google Scholar
  12. 12.
    C. T. Hayhurst, H. J. Ranson, D. J. Gardner and N. K. Birnbaum, Int. J. Impact Engr. 17 (1995) 375.CrossRefGoogle Scholar
  13. 13.
    G. R. Johnson and W. H. Cook, A. Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and Temperatures, in Proc. 7th Int. Symposium on Ballistics, The Hague, 1983.Google Scholar
  14. 14.
    E. A. Taylor, K. T. Sembells, C. J. Hayhurst, L. Kay and M. J. Burchell, Int. J. Impact Engr. 23 (1999) 895.CrossRefGoogle Scholar
  15. 15.
    M. A. Meyers, "Dynamic Behavior of Materials" (Wiley, NY, 1994).Google Scholar
  16. 16.
    M. H. Rice, R. G. Mcqueen and J. M. Walsh, Solid State Phys. 6 (1958) 1.Google Scholar
  17. 17.
    R. G. Mcqueen, S. P. Marsh, J. W. Taylor, J. N. Fritz and W. J. Carter, in "The Equation of State of Solids from Shock Wave Studies, High Velocity Impact Phenomena", edited by R. Kinslow (Academic Press, NY, 1970) p. 230.Google Scholar
  18. 18.
    T. H. See, M. K. Allbrooks, D. R. Atkinson, C. R. Simon and M. E. Zolensky, Meteroid and Debris Impact Features Documented on The Long Duration Exposure Facility, NASA-JSC Report No. 24608, 1990.Google Scholar
  19. 19.
    L. E. Murr, C.-S. Niou, S. A. Quinones and K. S. Murr, Scripta Metall. et Mater. 27 (1992) 101.CrossRefGoogle Scholar
  20. 20.
    D. E. Grady and M. E. Kipp, Impact Failure and Fragmentation Properties of Metals, Sandia Report SAND98-0387 Sandia National Laboratories, Albuquerque, New Mexico, March, 1998.Google Scholar
  21. 21.
    J. H. G. Livingstone, K. Verolme and C. J. Hayhurst, Int. J. Impact Engr. 26 (2001) 453.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • O. L. Valerio-Flores
    • 1
  • L. E. Murr
    • 1
  • V. S. Hernandez
    • 1
  • S. A. Quinones
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations