Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors

Abstract

Zirconium carbide (ZrC) and hafnium carbide (HfC) powders were produced by the carbothermal reduction reaction of carbon and the corresponding metal oxide (ZrO2 and HfO2, respectively). Solution-based processing was used to achieve a fine-scale (i.e., nanometer-level) mixing of the reactants. The reactions were substantially completed at relatively low temperatures (<1500°C) and the resulting products had small average crystallite sizes (∼50–130 nm). However, these products contained some dissolved oxygen in the metal carbide lattice and higher temperatures were required to complete the carbothermal reduction reactions. Dry-pressed compacts prepared using ZrC-based powders with ∼100 nm crystallite size could be pressurelessly sintered to ∼99% relative density at 1950°C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. E. TOTH, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).

    Google Scholar 

  2. 2.

    A. J. PERRY, Powder Metall. Int. 19(2) (1987) 29.

    Google Scholar 

  3. 3.

    K. UPADHYA, J.-M. YAN and W. P. HOFFMAN, Bull. Amer. Ceram. Soc. 76 (1997) 51.

    Google Scholar 

  4. 4.

    R. W. NEWMAN, Johns Hopkins APL Techn. Dig. 14(1) (1993) 24.

    Google Scholar 

  5. 5.

    M. M. OPEKA, I. G. TALMY, E. J. WUCHINA, J. A. ZAYKOSI and S. J. CAUSEY, J. Eur. Ceram. Soc. 19 (1999) 2405.

    Google Scholar 

  6. 6.

    F. M. CHARBONNIER, W. A. MACKIE, R. L. HARTMAN and TIANBAO XIE, J. Vac. Sci. Technol. B 19 (2001) 1064.

    Google Scholar 

  7. 7.

    B. V. COCKERAM, D. P. MEASURES and A. J. MEULLER, Thin Solid Films 355–356 (1999) 17.

    Google Scholar 

  8. 8.

    K. MINATO, T. OGAWA, K. SAWA, A. ISHIKAWA, T. TOMITA, S. IIDA and H. SEKINO, Nucl. Technol. 130 (1999) 272.

    Google Scholar 

  9. 9.

    V. I. ZHELANKIN, V. S. KUTSEV and B. F. ORMONT, Zh. Neorg. Khim. 3(5) (1958) 1237.

    Google Scholar 

  10. 10.

    S. K. SARKAR, A. D. MILLER and J. I. MUELLER, J. Amer. Ceram. Soc. 55(1) (1972) 628.

    Google Scholar 

  11. 11.

    C. E. CURTIS, L. M. DONEY and J. R. JOHNSON, ibid. 37(10) (1954) 458.

    Google Scholar 

  12. 12.

    P. G. COTTER and J. A. KOHN, ibid. 37(9) (1954) 415.

    Google Scholar 

  13. 13.

    R. V. SARA, Trans. AIME 223 (1965) 1683.

    Google Scholar 

  14. 14.

    E. L. SHAM, E. M. FARFAN-TORRES, S. BRUQUEGAMEZ and J. J. RODRIGUEZ-JIMENEZ, Solid State Ion. 63–65 (1993) 45.

    Google Scholar 

  15. 15.

    H. PREISS, E. SCHIERHORN and K. W. BRZEZINKA, J. Mater. Sci. 33 (1998) 4697.

    Google Scholar 

  16. 16.

    I. HASEGAWA, Y. FUKUDA and M. KAJIWARA, Ceram. Intern. 25 (1999) 523.

    Google Scholar 

  17. 17.

    Z. HU, M. D. SACKS, G. A. STAAB, C.-A. WANG and A. JAIN, Ceram. Eng. Sci. Proc. 23(4) (2002) 711.

    Google Scholar 

  18. 18.

    Y. KUROKAWA, S. KOBAYASHI, M. SUZUKI, M. SHIMAZAKI and M. TAKAHASHI, J. Mater. Res. 13(3) (1998) 760.

    Google Scholar 

  19. 19.

    B. D. CULLITY, “Elements of X-ray Diffraction” (Addison-Wesley Publishing Co., Reading, MA, 1967).

    Google Scholar 

  20. 20.

    D. C. BRADLEY, R. C. MEHROHTRA and W. WARDLAW, J. Chem. Soc. (London) (1953) 1634.

  21. 21.

    C. D. GAGLIARDI and K. A. BERGLUND, in “Processing Science of Advanced Ceramics”, edited by I. A. Aksay, G. L. McVay and D. R. Ulrich (Mat. Res. Soc. Symp. Proc., Mater. Res. Soc., Pittsburgh, PA, 1989) Vol. 155, p. 127.

  22. 22.

    K. CONSTANT, R. KIEFFER and P. ETTMAYER, Monatshefte fur Chemie 106 (1975) 823.

    Google Scholar 

  23. 23.

    A. OUENSANGA, A. PIALOUX and M. DODE, Rev. Int. Hautes Temp. Refract. 11 (1974) 289.

    Google Scholar 

  24. 24.

    A. MAITRE and P. LEFORT, Solid State Ionics 104 (1997) 109.

    Google Scholar 

  25. 25.

    V. P. BULYCHEV, R. A. ANDRIEVSKII and L. B. NEZHEVENKO, Poroshkovaya Metallurgia 172(4) (1977) 38.

    Google Scholar 

  26. 26.

    L. B. NEZHEVENKO, I. I. SPIVAK, P. V. GERASIMOV, B. D. GUREVICH and V. N. RYSTSOV, ibid. 212(8) (1980) 23.

    Google Scholar 

  27. 27.

    A. G. LANIN, E. V. MARCHEV and S. A. PRITCHIN, Ceram. Intern. 17 (1991) 310.

    Google Scholar 

  28. 28.

    P. BARNIER, C. BRODHAD and F. THEVENOT, J. Mater. Sci. 21 (1986) 2547.

    Google Scholar 

  29. 29.

    C. T. LYNCH, K. S. MAZDIYASNI, J. S. SMITH and W. J. CRAWFORD, Anal. Chem. 36(12) (1964) 2332.

    Google Scholar 

  30. 30.

    R. C. FAY and T. J. PINNAVAIA, Inorg. Chem. 7(3) (1968) 508.

    Google Scholar 

  31. 31.

    B. ALLARD, J. Inorg. Nucl. Chem. 38 (1976) 2109.

    Google Scholar 

  32. 32.

    Powder Diffraction File Card No. 08-0342 (tetragonal hafnium oxide, HfO2), JCPDS—International Centre for Diffraction Data, Newtown Square, PA.

  33. 33.

    Powder Diffraction File Card No. 21-0904 (orthorhombic hafnium oxide, HfO2), JCPDS—International Centre for Diffraction Data, Newtown Square, PA.

  34. 34.

    G. BOCQUILLON, C. SUSSE and B. VODAR, Rev. Int. Hautes Temp. Refract. 5 (1968) 247.

    Google Scholar 

  35. 35.

    O. OHTAKA, T. YAMANAK and S. KUME, J. Ceram. Soc. Jpn. 99 (1991) 826.

    Google Scholar 

  36. 36.

    Powder Diffraction File Card No. 39-1491 (cubic hafnium carbide, HfC), JCPDS—International Centre for Diffraction Data, Newtown Square, PA.

  37. 37.

    K. CONSTANT, R. KIEFFER and P. ETTMAYER, Monatshefte fur Chemie 106 (1975) 973.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sacks, M.D., Wang, CA., Yang, Z. et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. Journal of Materials Science 39, 6057–6066 (2004). https://doi.org/10.1023/B:JMSC.0000041702.76858.a7

Download citation

Keywords

  • Zirconium
  • Carbide
  • Dissolve Oxygen
  • Metal Oxide
  • Relative Density