Skip to main content
Log in

Carbon fiber reinforced hafnium carbide composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hafnium carbide is proposed as a structural material for aerospace applications at ultra high temperatures. The chemical vapor deposition technique was used as a method to produce monolithic hafnium carbide (HfC) and tantalum carbide (TaC). The microstructure of HfC and TaC were studied using analytical techniques. The addition of tantalum carbide (TaC) in the HfC matrix was studied to improve the microstructure. The microstructure of HfC, TaC and co-deposited hafnium carbide-tantalum carbide (HfC/TaC) were comparable and consisted of large columnar grains. Two major problems associated with HfC, TaC, and HfC/TaC as a monolithic are lack of damage tolerance (toughness) and insufficient strength at very high temperatures. A carbon fiber reinforced HfC matrix composite has been developed to promote graceful failure using a pyrolytic graphite interface between the reinforcement and the matrix. The advantages of using carbon fiber reinforcement with a pyrolytic graphite interface are reflected in superior strain capability reaching up to 2%. The tensile strength of the composite was 26 MPa and needs further improvement. Heat treatment of the composite showed that HfC did not undergo any phase transformations and that the phases comprising composite were are thermochemically compatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. KAUFMAN and H. NESOR, “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part II, Vol. II: Facilities and Techniques Employed for Cold Gas/Hot Wall Tests, ManLabs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  2. Idem., “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part II, Vol. III: Facilities and Techniques Employed for Cold Gas/Hot Wall Tests, MansLabs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  3. Idem., “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part III, Vol. I: Experimental Results of Low Velocity Cold Gas/Hot Wall Tests, ManLabs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  4. R. PERKINS, L. KAUFMAN and H. NESOR, “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part III, Vol. II: Experimental Results of High Velocity Cold Gas/Hot Wall Tests, Man-Labs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  5. L. KAUFMAN and H. NESOR, “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part III, Vol. III: Experimental Results of High Velocity Hot Gas/Cold Wall Tests, ManLabs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  6. Idem., “Stability Characterization of Refractory Materials under High Velocity Atmospheric Flight Conditions,” AFML-TR-69-84, Part IV, Vol. I: Theoretical Correlation of Material Performance with Stream Conditions, ManLabs, Inc., Cambridge, Mass. (Sept. 1969).

    Google Scholar 

  7. J. B. BERKOWITZ-MATTUCK, J. Electrochem. Soc. 113(9) (1966) 908.

    Google Scholar 

  8. G. M. MEHROTRA, R. ARUN and M. SUBRAMANIAN, “Oxidation Behavior of Hot Pressed TiC-ZrB2,TiC-HfBr2, SiB6-ZrB2 and SiB6-HfB2 Composites,” in Thermal Analysis in Metallurgy, edited by R. D. Shull and A. Joshi (The Minerals, Metals & Materials Soc, 1992) p. 346.

  9. W. C. TRIPP and H. C. GRAHAM, J. Electrochem. Soc., Solid State Sci. 118(7) (1971) 1195.

    Google Scholar 

  10. J. BULL, J. WHITE and L. KAUFMAN, “Ablation Resistant Ziconium and Hafnium Ceramics,” US Patent May 12 (1998) Patent No. 5,750,450.

  11. A. BRONSON, Y.-T. MA and R. R. MUTSO, J. Electrochem. Soc. 139(11) (1992) 3183.

    Google Scholar 

  12. E. V. CLOUGHERTY, R. L. POBER and L. KAUFMANN, Trans. Metall. Soc. AIME 242 (1968) 1077.

    Google Scholar 

  13. W. C. TRIPP, H. H. DAVIS and H. C. GRAHAM, Ceram. Bull. 52(8) (1973) 612.

    Google Scholar 

  14. J. D. BULL, D. J. RASKY and J. C. KARIKA, “Stability Characterization of Diboride Composites Under High Velocity Atmospheric Flight Conditions,” 24th Int. SAMPE Techn. Conf., Oct. 20–22, 1992.

  15. J. W. HINZE, W. C. TRIPP and H. C. GRAHAM, J. Electrochem. Soc.; Solid-State Sci. & Techn. 122(9) (1975) 1249.

    Google Scholar 

  16. M. M. OPEKA, I. G. TALMY, E. J. WUCHINA, J. A. ZAYKOSKI and S. J. CAUSEY, J. Eur. Ceram. Soc. 19 (1999) 2405.

    Google Scholar 

  17. S. R. LEVINE, E. J. OPILA, M. C. HABIG, J. D. KISER, M. SINGH and J. A. SALEM, J. Eur. Ceram. Soc. 22 (2002) 2757.

    Google Scholar 

  18. E. J. OPILA and M. J. HALBIG, Ceram. Eng. & Sci. Proc. 22(3) (2001) 221.

    Google Scholar 

  19. F. DECKER and C. T. SIMS, in “The Superalloys,” edited by C. T. Sims and W. C. Hagel (John Wiley, New York, 1972).

    Google Scholar 

  20. E. L. COURTRIGHT, H. C. GRAHAM, A. P. KATZ and R. J. KERANS, “Ultrahigh Temperature Assessment Study Ceramic Matrix Composites,” Rpt. No, WL-TR-91-4061, Wright Patterson Air Force Base, OH, 1991.

    Google Scholar 

  21. W. B. HILLIG, “Prospects for Ultra-High Temperature Ceramic Composites,” in “Tailoring Multiphase and Composite Ceramics,” edited by R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham (Materials Science and Research, 1986) Vol. 20, p. 697.

  22. K. UPADHYA, J. M. YANG and W. P. HOFFMANN, Amer. Ceram. Soc. Bull. 76(12) (1997) 51.

    Google Scholar 

  23. N. J. SHAW, J. A. DICARLO, N. JACOBSON, S. R. LEVINE, J. A. NESBITT, H. B. PROBST, W. SANDERS and C. A. STEARNS,“Materials for Engine Applications Above 3000°F—an Overview,” NASA Techn. Memorandum, 100169 (1987).

  24. C. E. WICKS and F. E. BLOCK, "Thermodynamic Properties of 65 Elements—Their Oxides, Halides, Carbides and Nitrides, Bull. No. 605, U.S. Bureau of Mines (1963).

  25. H. L. SCHICK, “Thermodynamics of Certain Refractory Compounds” (Academic Press, New York, 1966) Vol. II.

    Google Scholar 

  26. G. R. HOLCOMB and G. R. ST. PIERRE, Oxid. Met. 40(1/2) (1993) 109.

    Google Scholar 

  27. E. L. COURTRIGHT, J. T. PRATER, G. R. HOLCOMB, G. R. ST. PIERRE and R. A RAPP, Oxid. Met. 36 (1991) 42337.

    Google Scholar 

  28. D. GOZZI, G. GUZZARDI, M. MONTOZZI and P. L. CIGNINI, Solid State Ion. 101–103 (1997) 1243.

    Google Scholar 

  29. C. B. BARGERON and R. C. BENSON, “High Temperature Oxidation of Hafnium Carbide,” NASA CP-3054, Part 1, NASA (Washington, DC, 1989) p. 69.

  30. Idem., Surf. Coat. Techn. 36 (1988) 111.

    Google Scholar 

  31. C. B. BARGERON, R. C. BENSON, A. N. JETTE and T. E. PHILLIPS, J. Amer. Ceram. Soc. 76(4) (1993) 1040.

    Google Scholar 

  32. G. EMIG, G. SCHOCH and O. WORMER, J. de Physique IV(3) (1993) 535.

    Google Scholar 

  33. L. E. TOTH,“Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).

    Google Scholar 

  34. E. K. STORMS, “The Refractory Carbides” (Academic Press, New York, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayir, A. Carbon fiber reinforced hafnium carbide composite. Journal of Materials Science 39, 5995–6003 (2004). https://doi.org/10.1023/B:JMSC.0000041696.64055.8c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000041696.64055.8c

Keywords

Navigation