Structure and magnetic properties of mechanically synthesized nanocrystalline Co52Fe26Ni22 alloy


Mechanical alloying method was used to prepare nanocrystalline Co52Fe26Ni22 alloy. X-ray diffraction was applied for determination of the structure of the alloy. During milling Co-based solid solution with f.c.c. lattice was formed. After 80 h of synthesis the lattice parameter was equal to 0.3575 nm while the average grain sizes and the mean level of internal strains were about 24 nm and 0.72%, respectively. Mössbauer spectroscopy was adopted to characterize the local atomic order of the Co52Fe26Ni22 alloy. In the nearest neighbourhood of 57Fe isotopes there are at least six Co atoms, three Ni atoms and three Fe atoms giving the hyperfine magnetic field equal to 32.45(1) T. Magnetization measurements allowed to determine the effective magnetic moment of the Co52Fe26Ni22 alloy to be equal to 1.63 μB per formula unit. Curie temperature of the obtained alloy is equal to 1000 K.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. E. Luborsky, J. Appl. Phys. 32 (1961) 171 S.

    Google Scholar 

  2. 2.

    G. Herzer, IEEE Trans. Magn. 26 (1990) 1397.

    Google Scholar 

  3. 3.

    Idem., J. Magn. Magn. Mater. 112 (1992) 258.

    Google Scholar 

  4. 4.

    J. F. LÖffler, J. P. Meier, B. Doudin, J. P. Ansermet and W. Wagner, Phys. Rev. B 57 (1998) 2915.

    Google Scholar 

  5. 5.

    R. Alben, J. J. Becker and M. C. Chi, J. Appl. Phys. 49 (1978) 1653.

    Google Scholar 

  6. 6.

    T. Osaka, Electrochim. Acta 45 (2000) 3311.

    Google Scholar 

  7. 7.

    X. Liu, G. Zangari and L. Shen, J. Appl. Phys. 87 (2000) 5410.

    Google Scholar 

  8. 8.

    Y. M. Kim, D. Choi, S. R. Kim, K. H. Kim, J. Kim, S. H. Han and H. J. Kim, J. Magn. Magn. Mater. 226–230 (2001) 1507.

    Google Scholar 

  9. 9.

    G. K. Williamson and W. H. Hall, Acta Metallurg. 1 (1953) 22.

    Google Scholar 

  10. 10.

    S. U. Jen, H. P. Chiang, C. M. Chung and M. N. Kao, J. Magn. Magn. Mater. 236 (2001) 312.

    Google Scholar 

  11. 11.

    H. W. Song, S. R. Guo and Z. Q. Hu, Nanostruct. Mater. 11 (1999) 203.

    Google Scholar 

  12. 12.

    J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney and E. C. Aifantis, ibid.5 (1995) 441.

    Google Scholar 

  13. 13.

    G. Palumbo, S. J. Thorpe and K. T. Aust, Scripta Metall. Mater. 24 (1990) 2347.

    Google Scholar 

  14. 14.

    I. M. Kovenscky and V. V. Povetkin, Hyperfine Interations 52 (1989) 367.

    Google Scholar 

  15. 15.

    S. V. Kapelnicki, V. S. Pokatilov and V. V. Golikova, Sov. Phys.-Solid State 31 (1989) 261.

    Google Scholar 

  16. 16.

    E. Jartych, J. Olchowik, J. K. ?Zurawicz and M. Budzy´nski, J. Phys.: Condens. Matt. 5 (1993) 921.

    Google Scholar 

  17. 17.

    P. SÖderlind, O. Eriksson, B. Johansson, R. C. Albers and A. M. Boring, Phys. Rev. B 45 (1992) 12911.

    Google Scholar 

  18. 18.

    T. B. Massalski, "Binary Alloy Phase Diagrams" (ASM, Metals Park, Ohio, USA, 1990) p. 1187.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. Jartych.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jartych, E., Oleszak, D., Pe¸kała, M. et al. Structure and magnetic properties of mechanically synthesized nanocrystalline Co52Fe26Ni22 alloy. Journal of Materials Science 39, 5385–5388 (2004).

Download citation


  • Grain Size
  • Magnetic Field
  • Solid Solution
  • Magnetic Property
  • Curie Temperature