Skip to main content
Log in

Fast diffusion in nanocrystalline ceramics prepared by ball milling

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline materials can show enhanced diffusivity compared to their microcrystalline counterparts due to the large fraction of atoms or ions located in interfacial regions. In the case of ceramics, resulting properties with potential applications are, e.g., fast ionic conductivity, high mechanical creep rate and increased catalytic activity. Different nanocrystalline ceramic materials were prepared by high-energy ball milling of coarse grained source materials. The samples were characterized by XRD, TEM, BET method and IR spectroscopy. These measurements show that the primary crystallites form larger agglomerates with internal interfaces and that the reduction of the crystallite size is accompanied by a structural degradation of the surface zone. An example is the partial amorphization observed for LiBO2 by IR spectroscopy. The diffusivity and ion conductivity in these materials was studied by NMR relaxation, NMR line shape and impedance spectroscopies. It was possible to discriminate between highly mobile ions in the interfacial regions and immobile ions in the grains. In general diffusion in the nanocrystalline systems was found to be fast compared to that in the corresponding microcrystalline source materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Adv. Mater. {vn4} (1992) 474.

    Google Scholar 

  2. R. W. Siegel, in "Encyclopedia of Applied Physics," edited by G. L. Trigg, E. H. Immergut, E. S. Vera and W. Greulich (VCH, New York, 1994) Vol. 11, p. 173.

    Google Scholar 

  3. P. Heitjans and S. Indris, J. Phys.: Condens. Matter {vn15} (2003) R1257.

    Google Scholar 

  4. Idem., in "Synthesis, Functional Properties and Applications of Nanostructures” (MRS symposium proceedings), edited by H. W. Hahn, D. L. Feldheim, C. P. Kubiak, R. Tannenbaum and R.W. Siegel (Materials Research Society, Pittsburgh, 2002)Vol. 676, p. Y6.6.1.

    Google Scholar 

  5. S. Indris, D. Bork and P. Heitjans, J. Mater. Synth. Process. {vn8} (2000) 245.

    Google Scholar 

  6. S. Indris and P. Heitjans, Mater. Sci. Forum {vn343–346} (2000) 417.

    Google Scholar 

  7. S. Begin-Colin, T. Girot, A. Mocellin and G. Le CaËr, Nanostruct. Mater. {vn12} (1999) 195.

    Google Scholar 

  8. T. Girot, S. Begin-Colin, X. Devaux, G. Le CaËr and A. Mocellin, J. Mater. Synth. Process. {vn8} (2000) 139.

    Google Scholar 

  9. M. J. Pooley and A. V. Chadwick, Radiat. Eff. Defects Solids {vn158} (2003) 197.

    Google Scholar 

  10. E. M. Gutman, "Mechanochemistry of Materials" (Cambridge International Science Publishing, London, 1998).

    Google Scholar 

  11. C. H. Rscher, E. Tobschall and P. Heitjans, in "Applied Mineralogy," edited by D. Rammlmair, J. Mederer, Th. Oberthür, R. B. Heimann and H. Pentinghaus (A.A. Balkema Publishers, Rotterdam, 2000) p. 221.

    Google Scholar 

  12. M. Wilkening, D. Bork, S. Indris and P. Heitjans, Phys. Chem. Chem. Phys. {vn4} (2002) 3246.

    Google Scholar 

  13. H. P. Klug and L. E. Alexander, "X-Ray Diffraction Procedures" (John Wiley & Sons, New York, 1959).

    Google Scholar 

  14. P. Heitjans and A. Schirmer, in "Diffusion in Condensed Matter," edited by J. Kärger, P. Heitjans and R. Haberlandt (Springer, Berlin, 1998) p. 116.

    Google Scholar 

  15. E. Tobschall, Dissertation, Universität Hannover, 1999.

  16. D. Bork and P. Heitjans, J. Phys. Chem.B 102 (1998) 7303.

    Google Scholar 

  17. Idem., ibid. {vn105} (2001) 9162.

  18. W. Puin, P. Heitjans, W. Dickenscheid and H. Gleiter, in "Defects in Insulating Materials," edited by O. Kanert and J. M. Spaeth (World Scientific, Singapore, 1993) p. 137.

    Google Scholar 

  19. M. Wilkening, S. Indris and P. Heitjans, Phys. Chem. Chem. Phys. {vn5} (2003) 2225.

    Google Scholar 

  20. S. Indris, P. Heitjans, H. E. Roman and A. Bunde, Phys. Rev. Lett. {vn84} (2000) 2889.

    PubMed  Google Scholar 

  21. Idem., Defect Diffus. Forum {vn194–199} (2001) 935.

    Google Scholar 

  22. S. Indris and P. Heitjans, J. Non-Cryst. Solids {vn307–310} (2002) 555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Heitjans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitjans, P., Indris, S. Fast diffusion in nanocrystalline ceramics prepared by ball milling. Journal of Materials Science 39, 5091–5096 (2004). https://doi.org/10.1023/B:JMSC.0000039189.17243.72

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000039189.17243.72

Keywords

Navigation