Skip to main content
Log in

Plasticity in pentacene thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated the structure, defects and plasticity of thermally evaporated thin films of the organic molecular semiconductor pentacene using X-ray Diffraction (XRD), Optical microscopy (OM), Transmission Electron Microscopy (TEM), Electron Diffraction (ED), and High Resolution Electron Microscopy (HREM). Using XRD the degree of (001) texturing present in the as-grown films was characterized. The nature of pentacene plasticity and deformation-induced molecular alignment was investigated using rubbing and scratching techniques, as well as nanoindentation. Rubbing of the bulk powder produced thin oriented films, and a deformation length scale dependence was seen. Under stress pentacene crystals initially fail by cracking, until they reach a critical size of about one micron, when they tend to plastically deform into thin sheets. Alignment of thermally evaporated films was achieved under a controlled load scratch, and the degree of molecular orientation inside the scratched region was directly imaged using HREM. Finally, using nanoindentation we measured pentacene's plastic hardness to be 0.25 GPa at a loading rate 0.05 mN/s. A loading rate dependence of the hardness and stiffness was measured, with thin films behaving harder and stiffer at faster indentation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mat. 14 (2002) 99.

    Google Scholar 

  2. Y.-Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, IEEE Trans. Electron Dev. 18 (1997) 87.

    Google Scholar 

  3. M. Halik et al., Adv. Mat. 14 (2002) 1717.

    Google Scholar 

  4. J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, Chem. Mater. 8 (1996) 2542.

    Google Scholar 

  5. J. M. Peterson, J. Appl. Phys. 37 (1966) 4047.

    Google Scholar 

  6. R. J. Young, Phil. Mag. 30 (1974) 85.

    Google Scholar 

  7. J. Morgado, F. Cacialli, J. Gruner, N. C. Greenham and R. H. Friend, J. Appl. Phys. 85 (1999) 1784.

    Google Scholar 

  8. M. Suzuki, A. Ferencz, S. Iida, V. Enkelmann and G. Wegner, Adv. Mat. 5 (1993) 359.

    Google Scholar 

  9. I. Moggio et al., Macromolecules 43 (2001) 7091.

    Google Scholar 

  10. H. Yanagi, S. Doumi and T. Sasaki, J. Appl. Phys. 80 (1996) 4990.

    Google Scholar 

  11. M. L. Swiggers et al., Appl. Phys. Lett. 79 (2001) 1300.

    Google Scholar 

  12. J. O. OssÓ et al., Adv. Func. Mat. 12 (2002) 455.

    Google Scholar 

  13. J. M. Geary, J. W. Goodby, A. R. Kmetz and J. S. Patel, J. Appl. Phys. 62 (1987) 4100.

    Google Scholar 

  14. T. Ehara, H. Hirose, H. Kobayashi and M. Kotani, Synth. Met. 109 (2000) 43.

    Google Scholar 

  15. X. L. Chen, A. J. Lovinger, Z. N. Bao and J. Sapjeta, Chem. Mat. 13 (2001) 1341.

    Google Scholar 

  16. A. V. Kulkarni and B. Bhushan, J. Mat. Res. 12 (1997) 2707.

    Google Scholar 

  17. M. Oyen-Tiesma, Y. A. Toivola and R. F. Cook, MRS Proceedings 649 (2001) Q1.5.1.

    Google Scholar 

  18. C. J. Buchko, M. J. Slattery, K. M. Kozloff and D. C. Martin, J. Mat. Res. 15 (2000) 231.

    Google Scholar 

  19. D. C. Martin and E. L. Thomas, Polymer 36 (1995) 1743.

    Google Scholar 

  20. D. Holmes, S. Kumaraswamy, A. J. Matzger and K. P. C. Vollhardt, Chem. Eur. Journ. 5 (1999) 3399.

    Google Scholar 

  21. C. C. Mattheus et al., Acta. Cryst. C 57 (2001) 939.

    Google Scholar 

  22. D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, S. F. Nelson and D. G. Schlom, IEEE Electron Dev. Lett. 18 (1997) 87.

    Google Scholar 

  23. I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, Synth. Met. 104 (1999) 175.

    Google Scholar 

  24. C. D. Dimitrakopoulos, A. R. Brown and A. Pomp, J. Appl. Phys. 80 (1996) 2501.

    Google Scholar 

  25. T. Jentzch, H. J. Juepner, K.-W. Brzezinka and A. Lau, Thin Solid Films 315 (1998) 273.

    Google Scholar 

  26. L. F. Drummy, P. Miska and D. C. Martin, MRS Proceedings 734 (2003) A2.2.1.

    Google Scholar 

  27. L. F. Drummy, C. KÜbel, D. Lee, A. White and D. C. Martin, Adv. Mat. 14 (2002) 54.

    Google Scholar 

  28. C. Galiotis, R. T. Read, P. H. J. Yeung and R. J. Young, J. Polym. Sci. 22 (1984) 1589.

    Google Scholar 

  29. Z. N. Bao, A. J. Lovinger and A. Dodabalapur, Adv. Mat. 9 (1997) 42.

    Google Scholar 

  30. J. H. Lee et al., J. Kor. Phys. Soc. 38 (2001) 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drummy, L.F., Miska, P.K. & Martin, D.C. Plasticity in pentacene thin films. Journal of Materials Science 39, 4465–4474 (2004). https://doi.org/10.1023/B:JMSC.0000034139.73798.25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000034139.73798.25

Keywords

Navigation