Skip to main content
Log in

Dehydration and rehydration processes of cement paste exposed to high temperature environments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructural changes of an OPC cement paste after being exposed at various elevated temperatures and further rehydration have been evaluated using 29Si MAS-NMR. Thermogravimetry and XRD are also employed to complement the information. NMR studies of cement paste exposed to high temperatures demonstrate a progressive transformation of C-S-H gel that leads at 450°C, to a modified C-S-H gel. For temperatures above 200°C to a progressive formation of a new nesosilicate. At 750°C, the transformation of C-S-H is complete into the nesosilicate form with a C2S stoichiometry close to larnite, but less crystalline. Also is observed an increase of portlandite that takes place up to temperatures of 200°C. A progressive increase of calcite formation up to 450°C is noticed. The ettringite disappearance below 100°C is confirmed and the portlandite and calcite are converted to lime at 750°C. The initial anhydrous phases as larnite and brownmillerite remain unaltered during heating. Rehydration of the heated samples (450 and 750°C) shows recrystallization of calcite, portlandite and ettringite, and the C-S-H reformation from the new nesosilicate. The larnite and brownmillerite remain unaltered during rehydration. The developing of damaged due to the formation of microcracking is detected and improved because of rehydration phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Piasta, Z. Sawicz and L. Rudzinski, Mater. Struct. 17 (1984) 291.

    Google Scholar 

  2. W. M. Lin, T. D. Lin and L. J. Powers Couche, ACI Mater. J. 93 (1996) 199.

    Google Scholar 

  3. S. K. Handoo, S. Agarwal and S. K. Agarwal, Cem. Concr. Res. 32 (2002) 1009.

    Google Scholar 

  4. S. K. Deb, M. H. Manghnani, K. Ross, R. A. Livingston and P. J. M. Monteiro, Phys. Chem. Minerals 30 (2003) 31.

    Google Scholar 

  5. Y. Shimada and J. F. Young, Adv. Cem. Res. 13 (2001) 77.

    Google Scholar 

  6. N. N. Skoblinskaya and K. G. Krasilnikov, Cem. Concr. Res. 5 (1975) 381.

    Google Scholar 

  7. Idem., ibid. 5 (1975) 419.

    Google Scholar 

  8. K. Kira, Y. Makino and Y. Murata, Gypsum Lime 170 (1981) 7.

    Google Scholar 

  9. C. K. Park, B. K. Kim, S. Y. Hong, G. Y. Shin and H. K. Oh, in Proceedings of Int. Congr. Chem. Cem., 10th, 1997, edited by H. Justnes (Amarkai AB, Goeteborg, Swed., 1997) Vol. 4, p. 4iv068.

    Google Scholar 

  10. S. Shaw, C. M. B. Henderson and B. U. Komanschek, Chem. Geol. 167 (2000) 141.

    Google Scholar 

  11. S. Shaw, S. M. Clark and C. M. B. Henderson, ibid. 167 (2000) 129.

    Google Scholar 

  12. M. Castellote, X. Turrillas, C. Alonso, C. Andrade and J. Campo, Accepted Cem. Concr. Res.

  13. M. Castellote, X. Turrillas, C. Alonso, C. Andrade, I. Llorente and J. Campo, in Proceedings of Reunion de usuarios de síncroton, San sebastían (Spain), edited by U.F.M. (Donostia International Physics Center, 2002).

  14. M. Heikal, Cem. Concr. Res. 30 (2000) 1835.

    Google Scholar 

  15. M. S. Morsy, A. F. Galal and S. A. Abo-El-Enein, ibid. 28 (1998) 1157.

    Google Scholar 

  16. Y. Xu, Y. L. Wong, C. S. Poon and M. Anson, ibid. 31 (2000) 1065.

    Google Scholar 

  17. C. Alonso, C. Andrade, E. Menendez and E. Gayo, Hormigón y acero 221 (2001) 97.

    Google Scholar 

  18. X. Cong and R. J. Kirkpatrick, Cem. Concr. Res. 25 (1995) 1237.

    Google Scholar 

  19. H. F. W. Taylor, “Cement Chemistry” (Academic Press, London, UK, 1990).

    Google Scholar 

  20. S. N. Ghosh, S. L. Sarkar and S. Harsh, in “Mineral Admixtures in Cement and Concrete,” edited by S. Rehsi (ABI Books, New Delhi, 1993) p. 158.

    Google Scholar 

  21. D. Massiot, H. Thiele and A. Germanus, Bruker Report 140 (1994) 43.

    Google Scholar 

  22. G. Engelhardt and D. Michel, in “High-Resolution Solid-State NMR of Silicates and Zeolites” (John Wiley & Sons, Chichester, 1987).

    Google Scholar 

  23. M. MÄgi, E. Lippmaa, A. Samoson, G. Engelhardt and A. R. Grimmer, J. Phys. Chem. 88 (1984) 1518.

    Google Scholar 

  24. N. J. Clayden, C. M. Dobson, G. W. Groves and S. A. Rodger, in Proceedings of Congr. Int. Quim. Cimento, 8th, edited by (Geral 8o CIQC, Rio de Janeiro Brazil., 1986) Vol. 3, p. 51.

    Google Scholar 

  25. C. M. Dobson, D. G. C. Goberdhan, J. D. F. Ramsay and S. A. Rodger, J. Mater. Sci. 23 (1988) 4108.

    Google Scholar 

  26. M. Grutzeck, A. Benesi and B. Fanning, J. Amer. Ceram. Soc. 72 (1989) 665.

    Google Scholar 

  27. R. Rassem, H. Zanni-Theveneau, I. Schneid and M. Regourd, J. Chim. Phys. Phys.-Chim. Biol. 86 (1989) 1253.

    Google Scholar 

  28. Z. P. Bazant and M. F. Kaplan, in “Concrete at High Temperature: Material Properties and Mathematical Models” (Longman Group Limited, Burnt Mill, Harlow (Essex), England, 1996).

    Google Scholar 

  29. P. Berastegui, S. G. Eriksson and S. Hull, Mater. Res. Bull. 34 (1999) 303.

    Google Scholar 

  30. S. Mindess and J. Young, “Concrete” (Prentice-Hall, Englewood Cliffs, NJ, 1981).

    Google Scholar 

  31. M. Grutzeck, J. Larosa-Thompson and S. Kwan, in Proceedings of Int. Congr. Chem. Cem., 10th, 1997, edited by H. Justnes (Amarkai AB, Goeteborg, Swed, 1997) Vol. 2, p. 2ii067.

    Google Scholar 

  32. I. Klur, Etude par RMN de la structure des silicates de calcium hydratés, Université Paris 6 (Thesis) (1996).

  33. R. J. Kirkpatrick and X. D. Cong, in “An Introduction to 27Al and 29Si NMR Spectroscopy of the Cements and Concretes,” edited by P. Colombet and A. R. Grimmer (Gordon and Breach Science Publishers, 1994) p. 55.

  34. J. Hjorth, J. Skibsted and H. J. Jakobsen, Cem. Concr. Res. 18 (1988) 789.

    Google Scholar 

  35. R. Yuan and Z. Wang, Wuhan Gongye Daxue Xuebao 10 (1988) 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, C., Fernandez, L. Dehydration and rehydration processes of cement paste exposed to high temperature environments. Journal of Materials Science 39, 3015–3024 (2004). https://doi.org/10.1023/B:JMSC.0000025827.65956.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000025827.65956.18

Keywords

Navigation