Skip to main content
Log in

Effect of impact modification on slow crack growth in poly(vinyl chloride)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of impact modification on slow crack growth in a poly(vinyl chloride) (PVC) compound was examined in order to test a methodology for predicting long-term creep fracture from short-term tension-tension fatigue tests. In all cases the crack propagated in a stepwise manner through a crack tip craze zone. Step length was analyzed in terms of the Dugdale model for a crack tip plastic zone. The overall crack growth rate in fatigue and creep followed the conventional Paris power law with the same power 2.7, da/dt = A f ΔK I 2.7 and da/dt = BK I 2.7,respectively. The effects of frequency, temperature, and R-ratio (the ratio of the minimum to maximum stress intensity factor in the fatigue loading cycle) on the Paris prefactor were determined. Crack growth rate was modeled as the product of a creep contribution that depended only on the maximum stress intensity factor and a fatigue contribution that depended on strain rate da/dt = B f K I,max 2.7 (1 + C ε, where C is a coefficient defining the strain rate sensitivity. A linear correlation allowed for extrapolation of the creep prefactor B f from fatigue data. Impact modification decreased B f but had no effect on C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brown and X. Lu, in Proceedings of the 12th Plastic Fuel Gas Pipe Symposium, Boston, MA, 1991, p. 128.

  2. R. Hertzberg and J. Manson, “Fatigue of Engineering Plastics” (Academic Press, New York, 1980).

    Google Scholar 

  3. L. Burn, Plast. Rub. Compos. Pro. 21 (1994) 99.

    Google Scholar 

  4. L. KÖnczÖl, W. DÖll and L. Bevan, Coll. Polym. Sci. 268 (1990) 814.

    Google Scholar 

  5. J. Mandell and J. Chevaillier, Polym. Engr. Sci. 25 (1985) 170.

    Google Scholar 

  6. H. Kim and Y. Mai, J. Mater. Sci. 28 (1993) 5479.

    Google Scholar 

  7. Y. Mai and P. Keer, J. Vinyl. Tech. 7 (1985) 130.

    Google Scholar 

  8. S. Maddox and S. Manteghi, Plast. Rub. Compos. Pro. 17 (1992) 5.

    Google Scholar 

  9. N. J. Mills and N. Walker, Polymer 17 (1976) 335.

    Google Scholar 

  10. H. S Kim and X. M. Wang, J. Mater. Sci. 29 (1994) 3209.

    Google Scholar 

  11. Y. Hu, J. Summers, A. Hiltner and E. Baer, ibid. 38 (2003) 633.

    Google Scholar 

  12. T. E. Bernal-Lara, Y. Hu, J. Summers, A. Hiltner and E. Baer, J. Vinyl Add. Tech. (in press).

  13. P. Fitzpatrick, P. Mount, G. Smyth and R. C. Stephenson, Plast. Rub. Compos. Pro. 25 (1997) 359.

    Google Scholar 

  14. M. D. Skibo, J. A. Manson, S. M. Webler, R. W. Hetzberg and E. A. Collins, in Durability of Macromolecular Materials, ACS Symposium Series No. 95, edited by R. K. Eby (American Chemical Society, Washington, D.C., 1979) p. 311.

    Google Scholar 

  15. Rimnac, J. A. Manson, R. W. Hertzberg, S. M. Webler and M. D. Skibo, J. Macromol. Sci.-Phys. B 19 (1981) 351.

    Google Scholar 

  16. J. Phillips, R. Hertzberg and J. Manson, “Fatigue 87,” Vol. III (Engineering Materials Advisory Service Ltd., West Mildland, UK, 1987) p. 1317.

    Google Scholar 

  17. H. Kim, R. Truss, Y. Mai and B. Cotterell, Polymer 29 (1988) 268.

    Google Scholar 

  18. M. Parsons, E. V. Stepanov, A. Hiltner and E. Baer, J. Mater. Sci. 35 (2000) 1857.

    Google Scholar 

  19. Idem., ibid. 35 (2000) 2659.

    Google Scholar 

  20. L. H. Lee, J. F. Mandell and F. J. Mc Garry, Polym. Engr. Sci. 26 (1986) 626.

    Google Scholar 

  21. C. M. Rimnac, R. W. Hertzberg and J. A. Manson, J. Mater. Sci. 19 (1984) 1116.

    Google Scholar 

  22. M. G. Schinker, L. KÖnczÖl and W. DÖll, ibid. 1 (1982) 475.

    Google Scholar 

  23. W. DÖll, in “Fractography and Failure Mechanisms,” edited by A. Roulin-Moloney (Applied Science, London, 1989) p. 387.

    Google Scholar 

  24. E. Kramer and L. Berger, in “Advances in Polymer Science: Crazing in Polymers, 91/92:2,” edited by H.-H. Kausch (Springer-Verlag, New York, 1990) p. 1.

    Google Scholar 

  25. L. Berger and E. Kramer, Macromolecules 20 (1987) 1980.

    Google Scholar 

  26. H. Brown, ibid. 24 (1991) 2752.

    Google Scholar 

  27. C. Plummer and A. Donald, Polymer 32 (1991) 409.

    Google Scholar 

  28. D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.

    Google Scholar 

  29. S. Bensason, A. Hiltner and E. Baer, J. Appl. Polym. Sci. 63 (1997) 703.

    Google Scholar 

  30. M. Parsons, E. Stepanov, A. Hiltner and E. Baer, J. Mater. Sci. 34 (1999) 3315.

    Google Scholar 

  31. L. L. Berger, D. J. Buckley and E. J. Kramer, J. Polym. Sci. Part B: Polym. Phys. 25 (1987) 1679.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hiltner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal-Lara, T.E., Hu, Y., Summers, J. et al. Effect of impact modification on slow crack growth in poly(vinyl chloride). Journal of Materials Science 39, 2979–2988 (2004). https://doi.org/10.1023/B:JMSC.0000025823.39995.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000025823.39995.40

Keywords

Navigation