Skip to main content
Log in

Compressive behaviour of unidirectional flax fibre reinforced composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The compressive strength of unidirectional flax fibre epoxy composites was studied. The compressive strength is influenced negatively by the presence of kink bands in the flax fibres. Improvement of the adhesion between the fibres and the epoxy resin can be achieved easily by removing the thin wax layer which covers the surface of the flax fibres. However, improving the adhesion between fibres and matrix only improves the compressive strength to a very limited extent. Stabilisation of the kink bands present in the fibres and improvement of the compressive properties of the fibres can be achieved by impregnating the fibres with melamine formaldehyde (MF) resin. This results in a large increase in the compressive strength of the resulting composite. The increase in compressive strength is proportional to the amount of MF resin present in the composite. However, the presence of the resin in the fibres lowers their tensile strength, and subsequently the tensile strength of the resulting composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull, “An introduction to Composite Materials” (Cambridge University Press, Cambridge, UK, 1981).

    Google Scholar 

  2. H. L. Bos, M. J. A. Van Den Oever and O. C. J. J. Peters, J. Mater. Sci. 37 (2002) 1683.

    Google Scholar 

  3. M. Karus, M. Laup and D. Lohmeyer, Study on Markets and Prices for Natural Fibres (Germany and EU), Nova Institute, March 2000, FNR-FKZ:99NR163.

  4. R. Heijenrath and T. Peijs, Adv. Comp. Lett. 5 (1996) 71.

    Google Scholar 

  5. H. L. Bos and A. M. Donald, J. Mater. Sci. 34 (1999) 3029.

    Google Scholar 

  6. R. O. Herzog, “Der Flachs” in “Technologie der Textilfasern” (Julius Springer, Berlin, 1930).

    Google Scholar 

  7. G. J. Mcdougall, Carbohydr. Res. 241 (1993) 227.

    Google Scholar 

  8. T. A. Gorshkova, S. E. Wyatt, V. V. Sal'Nikov, D. M. Gibeaut, M. R. Ibragimov, V. V. Lozovaya and N. C. Carpita, Plant Physiol. 110 (1996) 721.

    PubMed  Google Scholar 

  9. C. Mooney, T. Stolle-Smits, H. Schols and E. De Jong, J. Biotechn. 89 (2001) 205.

    Google Scholar 

  10. V. V. Sal'Nikov, M. V. Ageeva, V. N. Yumashev and V. V. Lozovaya, Russ. Plant Physiol. 40 (1993) 416.

    Google Scholar 

  11. T. A. Gorshkova, V. V. Sal'Nikov, N. M. Pogodina, S. B. Chemikosova, E. V. Yablokova, A. V. Ulanov, M. V. Ageeva, J. E. G. Van Dam and V. V. Lozovaya, Annals of Botany 85 (2000) 477.

    Google Scholar 

  12. I. P. Thiery, J. Microsc. 6 (1967) 987.

    Google Scholar 

  13. J. M. Van Hazendonk, E. J. M. Reinerink, P. De Waard and J. E. G. Van Dam, Carb. Res. 291 (1996) 141.

    Google Scholar 

  14. P. E. Kolattukuty and K. E. Espelie, in “Biosynthesis and Biodegradation of Wood Components,” edited by T. Higuchy (American Academic Press, Orlando, FL, USA, 1985).

    Google Scholar 

  15. W. H. Morisson, D. E. Akin, D. S. Himmelsbach and G. R. Gamble, J. Sci. Food Agric. 79 (1999) 3.

    Google Scholar 

  16. W. H. Morisson and D. D. Archibald, J. Agric. Food Chem. 46 (1998) 1870.

    Google Scholar 

  17. K. Van De Velde and P. Kiekens, Ang. Makromol. Chemie 272 (1999) 87.

    Google Scholar 

  18. J. M. Van Hazendonk, J. C. Van Der Putten, J. T. F. Keurentjes and A. Prins, Coll. Surf. A 81 (1993) 251.

    Google Scholar 

  19. C. Morvan, A. Jauneau, A. Flaman, J. Millet and M. Demarty, Carb. Res. 13 (1990) 149.

    Google Scholar 

  20. O. M. Astley and A. M. Donald, Biomacromolecules 2 (2001) 672.

    PubMed  Google Scholar 

  21. P. NÄsslund, R. Vuong, H. Chanzy and J. C. JÉsior, Textile Res. J. 58 (1988) 414.

    Google Scholar 

  22. H. H. Wang, J. G. Drummond, S. M. Reath, K. Hunt and P. A. Watson, Wood Sci. Tech. 34 (2001) 493.

    Google Scholar 

  23. C. Y. Liang and R. H. Marchessault, J. Polym. Sci. 39 (1959) 269.

    Google Scholar 

  24. J. M. Felix, P. Gatenholm and H. P. Schreiber, Polym. Comp. 14 (1993) 449.

    Google Scholar 

  25. M. H. B. Snijder and H. L. Bos, Comp. Interf. 7 (2000) 69.

    Google Scholar 

  26. J. M. Felix and P. Gatenholm, J. Appl. Pol. Sci. 42 (1991) 609.

    Google Scholar 

  27. A. O. Rapp, H. Bestgen, W. Adam and R.-D. Peek, Holzforschung 53 (1997) 111.

    Google Scholar 

  28. A &; F bv, unpublished results.

  29. Compressive modulus measurements on 50 wt% flax fibre composites with various type of epoxy resin all yield a compressive stiffness between 30 MPa and 34 MPa, as published in: Final Report of the BLADECO project, EET, Utrecht, The Netherlands (2002).

  30. B. Lamy and C. Pomel, J. Mater. Sci. Lett. 21 (2002) 1211.

    Google Scholar 

  31. K. Van De Velde and P. Kiekens, Macromol. Mater. Eng. 286 (2001) 237.

    Google Scholar 

  32. D. G. Hepworth, J. F. V. Vincent, G. Jeronimidis and D. M. Bruce, Composites Part A 31 (2000) 599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bos, H.L., Molenveld, K., Teunissen, W. et al. Compressive behaviour of unidirectional flax fibre reinforced composites. Journal of Materials Science 39, 2159–2168 (2004). https://doi.org/10.1023/B:JMSC.0000017779.08041.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000017779.08041.49

Keywords

Navigation