Skip to main content
Log in

Copper electrodes multilayer ceramic capacitors Part I The dielectric composition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Several sintering aids were tested to lower the CaZrO3 ceramic sintering temperature. Numerous additions are shown to lower the densification temperature and to promote the dielectric properties with a QF product, an insulating resistivity and a permittivity enhancement, and a lowering of the temperature coefficient τε. A combination of dopants was tested and optimised, resulting in a low temperature sintering ceramic based on CaZrO3, LiNO3, SiO2 and TiO2. The samples sintered at 1000°C in oxidising or reducing atmosphere exhibit very attractive properties, with a QF product of nearly 15, ε ∼ 28, a near zero τε and ρi ∼ 1012 Ω · cm. The sintering mechanisms of this ceramic are also debated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Readey and M. A. Ritland Processing and Fabrication of Advanced Material IV, edited by T. S. Srivatsan and J. J. Moore (The Minerals, Metals &; Materials Society, 1996) p. 151.

    Google Scholar 

  2. O. Dominguez and J. Bigot, NanoStruct. Mater. 6 (1995) 877.

    Google Scholar 

  3. T. R. G. Kutty, P. V. Hegdek, K. B. Khan, U. Basak, S. N. Pillai, A. K. Sengupta, G. C. Jain, S. Majumdar, H. S. Kamath and D. S. C. Purushotham, J. Nucl. Mater. 305 (2002) 159.

    Google Scholar 

  4. Y. Harada, J. Nucl. Mater. 245 (1997) 217.

    Google Scholar 

  5. A. Poirson, P. Decorse, G. Caboche and L. C. Dufour, Solid State Ion. 99 (1997) 287.

    Google Scholar 

  6. M. Pollet, S. Marinel and G. Desgardin, J. Europ. Ceram. Soci. in press.

  7. M. Pollet and S. Marinel, ibid. 23(11) (2003) 1925.

    Google Scholar 

  8. Introduction to Powder Metallurgy, Chapter 4, p. 200.

  9. M. F. Yan, Mater. Sci. Engng. 48 (1981) 53.

    Google Scholar 

  10. J. Kanters, U. Eisele, and J. RÖdel, Acta Materialia 48 (2000) 1239.

    Google Scholar 

  11. K. Darcovich, L. BÉra and K. Shinagawa, Mater. Sci. and Engng. A 341 (2003) 247.

    Google Scholar 

  12. Fuh-Shan Shiau, Tsang-Tse Fang and Tsunghsing Leu, Mater. Chem. Phys. 57 (1998) 33.

    Google Scholar 

  13. R. N. Lumley and G. B. Shaffer, Scripta Materialia 35(5) (1996) 589.

    Google Scholar 

  14. B. P. Borglum and R. C. Buchanan, in Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, edited by G. W. Bailey (San Francisco Press, 1987).

  15. F. Kulcsar, J. Amer. Ceram. Soc. 39(1) (1956) 13.

    Google Scholar 

  16. J. S. Choi and H. G. Kim, J. Mater. Sci. 27(5) (1992) 1285.

    Google Scholar 

  17. J. M. Haussonne, G. Desgardin, P. Bajolet and B. Raveau, J. Amer. Ceram. Soc. 66(11) (1983) 801.

    Google Scholar 

  18. G. Desgardin, I. Mey, B. Raveau and J. M. Haussonne, Amer. Ceram. Soc. Bull. 64(4) (1985) 564.

    Google Scholar 

  19. D. Tolino and J. Blum, J. Amer. Ceram. Soc.—Commun. Amer. Ceram. Soc. 68(11) (1985) C292.

    Google Scholar 

  20. H. Anderson and M. Proudian, 6th International Conference on Sintering, University of Notre-Dame, Paris, 6-8 June 1983.

    Google Scholar 

  21. J. M. Haussonne, J. Lostec, O. Regreny, G. Desgardin, B. Raveau and P. Bajolet Silicates Industriels (1984) 11.

  22. K. Kleveland, M. A. Einarsrud and T. Grande, J. Europ. Ceram. Soc. 20(2) (2000) 185.

    Google Scholar 

  23. L. Qiao, H. Zhou, K. Chen and R. Fu, ibid. in Press.

    Google Scholar 

  24. E. Eremina, A. Kravchenko, P. Kazin, Y. Tretyakov and M. Jansen, Superconductor Sci. Techn. 11 (1998) 223.

    Google Scholar 

  25. H. Kanai, O. Furukawa, S. I. Nakamura and Y. Yamshita, J.Mater. Sci. 31 (1996) 1609.

    Google Scholar 

  26. D. W. Kim, D. G. Lee and K. S. Hong, Mater. Res. Bull. 36 (2001) 585.

    Google Scholar 

  27. C. L. Huang and C. S. Hsu, ibid. 36 (2001) 2677.

    Google Scholar 

  28. C. L. Huang and M. H. Weng, ibid. 36 (2001) 2741.

    Google Scholar 

  29. C. L. Huang and K. H. Chiang, ibid. 37 (2002) 1941.

    Google Scholar 

  30. T. Hu, H. Jantunen, A. Uusimaki and S. Leppavuori, Mater. Sci. Semicond. Proc., in Press.

  31. Z. He, J. Ma, Y. Qu and X. Feng, J. Europ. Ceram. Soc. 22 (2002) 2143.

    Google Scholar 

  32. Y. Haitao, G. Ling, Y. Runzhang, Y. Guotao and H. Peiyun, Mater. Chem. Phys. 69 (2001) 281.

    Google Scholar 

  33. M. Mori, T. Yamamoto, T. Ichikawa and Y. Takeda, Solid State Ion. 148 (2002) 93.

    Google Scholar 

  34. C. L. Huang and Y. C. Chen, J. Europ. Ceram. Soc. 23 (2003) 167.

    Google Scholar 

  35. C. L. Huang, M. H. Weng and H. L. Chen, Mater. Chem. Phys. 71 (2001) 17.

    Google Scholar 

  36. Y. R. Wang and S. F. Wang, Intern. J. Inorg. Mater. 3 (2001) 1189.

    Google Scholar 

  37. N. Rezlescu, L. Sachelarie, E. Rezlescu, C. L. Sava and P. D. Popa, Ceram. Intern. 29(1) (2003) 107.

    Google Scholar 

  38. K. Albertsen, D. Hennings and O. Steiglemann, J. Electroceram. 2(3) (1998) 193.

    Google Scholar 

  39. P. Hansen, D. Hennings and H. Schreinemacher, ibid. 2(2) (1998) 85.

    Google Scholar 

  40. Idem., J. Amer. Ceram. Soc. 81(5) (1998) 1369.

    Google Scholar 

  41. W. H. Lee, T. Y. Tseng and D. Hennings, ibid. 83(6) (2000) 1402.

    Google Scholar 

  42. W. H. Lee, T. Y. Tseng and D. Hennings, J. Mater. Sci. Mater. Electr. 11 (2000) 157.

    Google Scholar 

  43. C. Vigreux, B. Deneuve, J. El Fallah and J. M. Haussonne, J. Europ. Ceram. Soc. 21(10/11) (2001) 1681.

    Google Scholar 

  44. J. A. Cerri, E. R. Leite, D. Gouvea, E. Longo and J. Arana Varela, ibid. 79(3) (1996) 799.

    Google Scholar 

  45. W. C. Las, D. Gouvea and W. Sano, Solid State Sci. 1 (1999) 331.

    Google Scholar 

  46. C. L. Huang, M. H. Weng, C. T. Lion and C. C. Wu, Mater. Res. Bull. 35 (2000) 2445.

    Google Scholar 

  47. C. G. Shi and I. M Low, ibid. 33(6) (1998) 817.

    Google Scholar 

  48. E. R. Nielsen, E. Ringgaard and M. Kosec, J. Europ. Ceram. Soc. 22(11) (2002) 1847.

    Google Scholar 

  49. L. Benzida and J. Ravez, J. Fluor. Chem. 73 (1995) 69.

    Google Scholar 

  50. L. Benziada-TaÏbi and H. Kermoun, ibid. 96 (1999) 25.

    Google Scholar 

  51. M. Pollet and S. Marinel, Mater. Sci. Engng. A, submitted.

  52. T. Yamgushi, Y. Komatsu, T. Otobe and Y. Murakami, Ferroelectrics 27 (1980) 273.

    Google Scholar 

  53. B. P. Borglum and R. C. Buchanan, Ceramic Transaction, Vol. I, “Ceramic Powder Science II, A”, edited by G. L. Messing et al. (American Ceramic Society, Colombus, OH, 1988).

    Google Scholar 

  54. M. Pollet, M. Daturi and S. Marinel, Mater. Sci. Engng. B, In press.

  55. Y. Suzuki, P. E. D. Morgan and T. Ohji, J. Amer. Ceram. Soc. 83(8) (2000) 2091.

    Google Scholar 

  56. K. Cvetkovic and A. Petric, Amer. Ceram. Soc. Bull. 79 (2000) 65.

    Google Scholar 

  57. J. H. Choy, Y. S. Han, S. H. Hwang, S. H. Byeon and G. Demazeau, J. Amer. Ceram. Soc. 81(12) (1998) 3197.

    Google Scholar 

  58. J. A. Badenes, M. Llusar, J. Calbo, M. A. Tena and G. Monros, British Ceram. Trans. 101(4) (2002) 158.

    Google Scholar 

  59. B. B. Karki, R. M. Wentzcovitch, S. De Gironcoli and S. Baroni, Phys. Rev. B 62(22) 14750.

  60. S. Janaswamy, E. D. Dias and G. Sreenivasa Murthy, Bull. Mater. Sci. 20(1) (1997) 23.

    Google Scholar 

  61. S. Janaswamy, G. Sreenivasa Murthy, E. D. Dias and V. R. K. Murthy, Mater. Lett. 55 (2002) 414.

    Google Scholar 

  62. K. Fukuda and R. Kitoh, J. Amer. Ceram. Soc. 77(1) (1994) 149.

    Google Scholar 

  63. B. A. Wechsler and R. B. Von Dreele, Acta. Crystallogr. B 45 (1989) 542.

    Google Scholar 

  64. G. R. Fischer, L. J. Manfredo, R. N. Mcnally and R. C. Doman, J. Mater. Sci. 16(12) (1981) 3447.

    Google Scholar 

  65. A. K. Chaterjee and G. I. Zhmoidin, ibid. 7(1) (1972) 93.

    Google Scholar 

  66. G. Roult, R. Pastuszak, R. Marchand and Y. Laurent, Acta Crystallogr. C39 (1983) 673.

    Google Scholar 

  67. R. D. Shannon, ibid. A 32 (1976) 751.

    Google Scholar 

  68. J. Garcia-Jaca, J. L. Mesa, M. Insausti and J. I. R. Larramendi, Mater. Res. Bull. 34(2) (1999) 289.

    Google Scholar 

  69. A. W. Sleight, Acta Crystallogr. B28 (1972) 2899.

    Google Scholar 

  70. M. Morinaga, J. B. Cohen and J. Faber, Jr., ibid. A 35 (1979) 789.

    Google Scholar 

  71. P. Duran, P. Recio and J. M. Rodriguez, J. Mater. Sci. 22 (1987) 4348.

    Google Scholar 

  72. J. Goupy, “Methods for Experimental Design. Principles and Applications for Physicists and Chemists” (Elsevier, Amsterdam 1993).

    Google Scholar 

  73. G. Sado and M. C. Sado, AFNOR Technique (1991).

  74. R. L. Coble, J. Appl. Phys. 32(5) (1961) 787.

    Google Scholar 

  75. R. L. Coble, ibid. 36(2) (1965) 2327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollet, M., Marinel, S. Copper electrodes multilayer ceramic capacitors Part I The dielectric composition. Journal of Materials Science 39, 1943–1958 (2004). https://doi.org/10.1023/B:JMSC.0000017756.82942.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000017756.82942.2f

Keywords

Navigation