Skip to main content
Log in

Crack toughness behavior of binary poly(styrene-butadiene) block copolymer blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fracture behavior of binary blends comprising styrene-butadiene block copolymers having star and triblock architectures was studied by instrumented Charpy impact test. The toughness of the ductile blends was characterized by the dynamic crack resistance concept (R curves). While the lamellar thermoplastic star block copolymer shows elastic behavior (small scale yielding and unstable crack growth), adding 20 wt% of a triblock copolymer (thermoplastic elastomer, TPE) leads to a strong increase in crack toughness. The stable crack propagation behavior of these blends was described by the crack resistance curve (R) concept of elastic-plastic fracture mechanics. This concept allows the determination of fracture mechanics parameters as resistance against stable crack initiation and propagation. Two brittle to tough transitions (BTT) are observed in the binary block copolymer blend: BTT1 at 20% TPE and BTT2 at about 60% TPE. The strong increase of toughness at 60 wt% TPE indicates a ‘tough/high-impact’ transition as a measure for the protection against stable crack initiation.

The kinetics of stable crack propagation is discussed with respect to deformation mechanisms and crack-tip blunting behavior. The analysis of fracture surface by SEM revealed three different types of deformation mechanisms depending on the weight fraction of TPE: coalescence of microvoids (similar to semicrystalline polymers), shear flow (typical of many amorphous polymers like polycarbonate) and tearing (similar to elastomers). Our investigations on nanostructured binary block copolymer blends show new possibilities to tailor the toughness of polymer materials associated with complex morphology-toughness correlations. This may lead to new materials concepts for toughened nanostructured polymers, which still maintain excellent transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Tirell, Nature 390 (1997) 336.

    Google Scholar 

  2. Z. R. Chen and J. Kornfield, Polymer 39 (1998) 4679.

    Google Scholar 

  3. T. Hashimoto, S. Koizumi and H. Hasegawa, Macromolecules 27 (1994) 1562.

    Google Scholar 

  4. T. Hashimoto, K. Yamasaki and S. Koizumi, ibid. 26 (1993) 2895.

    Google Scholar 

  5. S. Koizumi, H. Hasegawa and T. Hashimoto, ibid. 27 (1994) 4371.

    Google Scholar 

  6. I. W. Hamley, “The Physics of Block Copolymers” (University Press, Oxford, 1998).

    Google Scholar 

  7. R. Weidisch and G. H. Michler, in “Block Copolymers,” edited by F. Balta Calleja and Z. Roslaniec (Marcel Dekker Inc., New York, 2000) p. 215.

    Google Scholar 

  8. “Thermoplastic Elastomers,” edited by N.R. Legge, G. Helden, H. E. Schroeder and R. P. Quirk (Carl Hanser, Munich Vienna, 1996).

    Google Scholar 

  9. I. Yamaoka and M. Kimura, Polymer 34 (1993) 4399.

    Google Scholar 

  10. I. Yamaoka, ibid 39 (1998) 1765.

    Google Scholar 

  11. ASTM D 6068, “Standard Test Method for Determining J-R Curves of Plastics” (ASTM, Philadelphia, 1996).

  12. Standard Draft ESIS TC4, “A Testing Protocol for Conducting J-Crack Growth Resistance Curve Tests on Plastics” (ESIS, Sheffield, 1995).

    Google Scholar 

  13. P. Will, J. Mater. Sci. 29 (1994) 2335.

    Google Scholar 

  14. W. Brocks, G. KÜnecke and T. Steiger, BAM Research Report No. 1.01 91/3 (BAM, Berlin, 1991).

  15. R. Adhikari, R. Lach, G. H. Michler, R. Weidisch, W. Grellmann and K. Knoll, Polymer 43 (2002) 1943.

    Google Scholar 

  16. “Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites” (ESIS Publication 28), edited by D.R. Moore, A. Pavan and J.G. Williams (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  17. “Deformation and Fracture Behaviour of Polymers,” edited by W. Grellmann and S. Seidler (Springer, Berlin Heidelberg, 2001).

    Google Scholar 

  18. V. GarcÍa Brosa, C. Bernal and P. Frontini, Eng. Fract. Mech. 62 (1999) 231.

    Google Scholar 

  19. W. Grellmann, S. Seidler, K. Jung and I. Kotter, J. Appl. Polym. Sci. 79 (2001) 2317.

    Google Scholar 

  20. Y. Han, R. Lach and W. Grellmann, ibid. 79 (2001) 9.

    Google Scholar 

  21. K. Knoll and N. Nießner, Macromol. Symp. 232 (1998) 231.

    Google Scholar 

  22. W. Grellmann, S. Seidler and W. Hesse, in “Deformation and Fracture Behaviour of Polymers,” edited by W. Grellmann and S. Seidler (Springer, Berlin Heidelberg, 2001) p. 71.

    Google Scholar 

  23. S. Seidler and W. Grellmann, in “Deformation and Fracture Behaviour of Polymers,” edited by W. Grellmann and S. Seidler (Springer, Berlin Heidelberg, 2001) p. 87.

    Google Scholar 

  24. W. Grellmann and S. Seidler, in “Material Mechanics—Fracture Mechanics—Micro Mechanics,” edited by T. Winkler and A. Schubert (DDP Goldenberg, Dresden, 1999) p. 336.

    Google Scholar 

  25. S. Seidler and W. Grellmann, Intern. J. Fract., Lett. Fract. Micromech. 96 (1999) L17.

    Google Scholar 

  26. W. Grellmann, R. Lach and S. Seidler, in “From Charpy to Present Impact Testing” (ESIS Publication 30), edited by A. Pineau and D. Francois (Elsevier Science, Amsterdam, 2002) p. 145.

    Google Scholar 

  27. R. Adhikari, R. Lach, G. H. Michler, R. Weidisch and K. Knoll, Macromol. Mater. Eng. 288 (2003) 432.

    Google Scholar 

  28. W. Grellmann, S. Seidler and R. Lach, in “Proc. of 3rd International Conference on Mechanics of Time Dependent Materials” (University Erlangen-Nürnberg, Erlangen, 2000) p. 226.

    Google Scholar 

  29. W. Grellmann, in “Deformation and Fracture Behaviour of Polymers,” edited by W. Grellmann and S. Seidler (Springer, Berlin Heidelberg, 2001) p. 3.

    Google Scholar 

  30. H. Blumenauer, E. Schick and R. Ortmann, in “Bruchmechanische Werkstoffcharakterisierung,” edited by H. Blumenauer (Deutscher Verlag für Grundstoffindustrie, Leipzig, 1991) p. 31.

    Google Scholar 

  31. W. Grellmann and R. Lach, Appl. Macromol. Chem. Phys. 253 (1997) 27.

    Google Scholar 

  32. S. Wu, Polymer 26 (1985) 1855.

    Google Scholar 

  33. A. Margolina, Polym. Commun. 31 (1990) 95.

    Google Scholar 

  34. G. H. Michler, Acta Polymerica 44 (1993) 113.

    Google Scholar 

  35. H. Beerbaum and W. Grellmann, in “Fracture of Polymers, Composites and Adhesives” (ESIS Publication 27), edited by J. G. Williams and A. Pavan (Elsevier Science, Oxford, 2000) p. 163.

    Google Scholar 

  36. Y. Han, R. Lach and W. Grellmann, J. Appl. Polym. Sci. 75 (2000) 1605.

    Google Scholar 

  37. W. Grellmann, unpublished results.

  38. “Polymer Blends: Formulation and Performance,” two-volume set, edited by D. R. Paul and C.B. Bucknall (Wiley, New York, 1999).

    Google Scholar 

  39. G. H. Michler, R. Adhikari, W. Lebek, S. Goerlitz, R. Weidisch and K. Knoll, J. Appl. Polym. Sci. 85 (2002) 683.

    Google Scholar 

  40. R. Adhikari, R. Godehardt, W. Lebeck, R. Weidisch, G. H. Michler and K. Knoll, J. Macromol. Sci., Phys. B 40 (2001) 833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Weidisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lach, R., Adhikari, R., Weidisch, R. et al. Crack toughness behavior of binary poly(styrene-butadiene) block copolymer blends. Journal of Materials Science 39, 1283–1295 (2004). https://doi.org/10.1023/B:JMSC.0000013887.79570.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000013887.79570.33

Keywords

Navigation