Skip to main content
Log in

Effects of thickness and environmental temperature on fracture behaviour of polyetherimide (PEI)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture behaviour of a polyetherimide (PEI) thermoplastic polymer was studied using compact tension (CT) specimens with a special emphasis on effects of specimen thickness and testing temperatures on the plane strain fracture toughness. The results show that the valid fracture toughness of the critical stress intensity factor, K IC, and strain energy release rate, G IC, is independent of the specimen thickness when it is larger than 5 mm at ambient temperature. On the other hand, the fracture toughness is relatively sensitive to testing temperatures. The K IC value remains almost constant, 3.5 MPa\(\sqrt {\text{m}} \) in a temperature range from 25 to 130°C, but the G IC value slightly increases due to the decrease in Young's modulus and yield stress with increasing temperature. The temperature dependence of the fracture toughness, G IC, was explained in terms of a plastic deformation zone around the crack tip and fracture surface morphology. It was identified that the larger plastic zone and extensive plastic deformation in the crack initiation region were associated with the enhanced G IC at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “ASTM D 5045-99 Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials” (American Society of Testing and Materials, Philadelphia, 1999).

  2. S. Hashemi and J. G. Williams, J. Mater. Sci. 19 (1984) 3746.

    Google Scholar 

  3. S. Y. Hobbs and R. C. Bopp, Polymer 21 (1980) 559.

    Google Scholar 

  4. A. J. Kinloch and R. J. Young, in “Fracture Behaviour of Polymers” (Elsevier, London, 1983) p. 26.

    Google Scholar 

  5. “ASTM D 638–99 Standard Test Methods for Tensile Properties of Plastics” (American Society of Testing and Materials, Philadelphia, 1999).

  6. K. N. Knapp II, G. A. Gabriele and D. Lee, ANTEC'97 (1997) 1198.

  7. K. Xiao, L. Ye and Y. S. Kwok, J. Mater. Sci. 33 (1998) 2831.

    Google Scholar 

  8. in “The Effect of Temperature and Other Factors on Plastics” (Plastics Design Library, New York, 1990) p. 275.

  9. W. Brostow and R. D. Corneliussen, in “Failure of Plastics” (Hanser Publisher, Munich, 1986) p. 98.

    Google Scholar 

  10. L. Engel, “An Atlas of Polymer Damage: Surface Examination by Scanning Electron Microscope” (Wolfe Science, 1981) p.

  11. L. Ye, C. T. Yuan and Y. W. Mai, Polym. Compos. 19 (1998) 830.

    Google Scholar 

  12. H. R. Brown, J. Mater. Sci. 17 (1982) 469.

    Google Scholar 

  13. F.-C. Chang and W.-B. Liu, J. Appl. Polym. Sci. 44 (1992) 1615.

    Google Scholar 

  14. L. H. Lee, J. F. Mandell and F. J. Mcgarry, Polym. Eng. Sci. 27 (1987) 1128.

    Google Scholar 

  15. D. Hull and T. W. Owen, J. Polym. Sci., Polym. Phy. Ed. 11 (1973) 2039.

    Google Scholar 

  16. C. M. Agrawal and G. W. Pearsall, J. Mater. Sci. 26 (1991) 1919.

    Google Scholar 

  17. G. W. Powell, “Failure Analysis and Prevention,” Vol. 11 (American Society for Metals, Metals Park, OH, USA, 1990) p. 75.

    Google Scholar 

  18. M. G. A. Tijssens, E. Van Der Giessen and L. J. Sluys, Int. J. Solids Struct. 37 (2000) 7307.

    Google Scholar 

  19. B. W. Smith and R. A. Grove, ASTM STP 948 (1987) 68.

    Google Scholar 

  20. W. Doll and L. Konczol, Adv. Polym. Sci. 91/92 (1991) 138.

    Google Scholar 

  21. M. K. V. Chan and J. G. Williams, Polym. Eng. Sci. 21 (1981) 1019.

    Google Scholar 

  22. M. Parvin and J. G. Williams, J. Mater. Sci. 10 (1975) 1883.

    Google Scholar 

  23. P. J. Hine, R. A. Duckett and I. M. Ward, Polymer 22 (1981) 1745.

    Google Scholar 

  24. R. Frassine and A. Pavan, Compos. Sci. Technol. 54 (1995) 193.

    Google Scholar 

  25. A. G. Atkins, C. S. Lee and R. M. Caddell, J. Mater. Sci. 10 (1975) 1381.

    Google Scholar 

  26. G. P. Marshall, L. H. Coutts and J. G. Williams, ibid. 9 (1974) 1409.

    Google Scholar 

  27. K. Mizutani, J. Mater. Sci. Lett. 6 (1987) 915.

    Google Scholar 

  28. Y. Han, Y. Yang, B. Li and Z. Feng, J. Mater. Sci. 30 (1995) 3658.

    Google Scholar 

  29. R. Nimmer, in “Engineered Materials Handbook,” Vol. 2, Engineering Plastics (ASM International, Metal Park, Ohio, 1988) p. 679.

    Google Scholar 

  30. A. T. Dibenedetto and K. L. Trachte, J. Appl. Polym. Sci. 14 (1970) 2249.

    Google Scholar 

  31. K. Friedich, L. A. Carlsson, J. W. Gillespie, Jr. and J. Karger-Kocsis, “Thermoplastic Composite Materials” (Elsevier Science Publisher, Amsterdam, 1991) p. 233.

    Google Scholar 

  32. D. R. Moore, Polym. Testing 5 (1985) 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KY., Ye, L. Effects of thickness and environmental temperature on fracture behaviour of polyetherimide (PEI). Journal of Materials Science 39, 1267–1276 (2004). https://doi.org/10.1023/B:JMSC.0000013885.27372.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000013885.27372.fd

Keywords

Navigation