Skip to main content
Log in

Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plane-wave shock deformation has been shown to produce deformation twins or twin-faults in essentially all metal and alloys. In FCC metals and alloys twinning depends upon stacking-fault free energy (SFE) and a critical twinning pressure; which increases with increasing SFE. For impact cratering where the shock wave is spherical and a prominent deviatoric (shear) stress is involved, metals and alloys with high SFE form microbands coincident with {111} plane traces while low SFE metals and alloys either form mixtures of twins and microbands or microtwins. Oblique shock loading of copper also produces mixtures of twins and microbands. Both microtwins and microbands increase in volume fraction with increasing grain size. BCC iron is observed to twin in both shock loading and as a result of impact cratering. Impact craters, shaped charges, and other examples of extreme deformation and flow at high strain rates exhibit various regimes of shear bands and dynamic recrystallization as a mechanism for solid-state flow. Deformation twins and microbands are also often precursors to this process as well. Examples of these phenomena in FCC materials such as Al, Ni, Cu, stainless steel and brass, and BCC materials such as Fe, W, Mo, W-Ta, and Ta are presented; with emphasis on optical metallography and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Rinehart and J. Pearson, “Behavior of Metals Under Impulsive Loads” (ASM, Metals Park, OH, 1954).

    Google Scholar 

  2. M. H. Rice, R. G. Mc Queen and J. M. Walsh, “Compression of Solids by Strong Shock Waves, Solid State Physics,” Vol. 6 (Academic Press, NY, 1958).

    Google Scholar 

  3. C. S. Smith, Trans. AIME 212 (1958) 574.

    Google Scholar 

  4. P. W. Shewmon and V. F. Zackay (eds.), “Response of Metals to High-Velocity Deformation” (Wiley-Interscience, NY, 1961).

    Google Scholar 

  5. R. W. Armstrong, J. Mech. Phys. Sol. 9 (1961) 196.

    Google Scholar 

  6. M. W. Meyers, Scripta Met. 12 (1978) 21.

    Google Scholar 

  7. W. Arnold, Dynamische Werkstoffuervhatten von Armco-Eisen bei Stosswellenbelastung, Fortschr.-Ber. VDl-Verlag, Dusseldorf, Reiche 5, Nr. 247, 1992.

    Google Scholar 

  8. K. Wongwiwat and L. E. Murr, Mater. Sci. Engr. 35 (1978) 273.

    Google Scholar 

  9. M. A. Meyers, “Dynamic Behavior of Materials” (Wiley, NY, 1994).

    Google Scholar 

  10. R. W. Armstrong and F. J. Zerilli, in “Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena,” Chap. 15 edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier Science Ltd., Amsterdam, 2001) p. 115.

    Google Scholar 

  11. M. A. Meyers, U. R. Andrade and A. H. Chokshi, Met. and Mater. Trans. 26A (1995) 2881.

    Google Scholar 

  12. R. W. Armstrong and P. J. Worthington, in “Metallurgical Effects at High Strain Rates,” edited by R. W. Rohde et al. (Plenum Press, NY, 1973) p. 401.

    Google Scholar 

  13. L. E. Murr, in “Shock Waves in Condensed Matter,” edited by S. C. Schmidt and N. C. Holmes (Elsevier Science, Amsterdam, 1988) p. 315.

    Google Scholar 

  14. R. J. De Angelis and J. B. Cohen, J. Metals 15 (1963) 681.

    Google Scholar 

  15. M. A. Meyers and L. E. Murr, in “Shock Waves and High-Strain-Rate Phenomena in Metals,” Chap. 3 edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) p. 487.

    Google Scholar 

  16. S. A. Quinones, J. M. Rivas and L. E. Murr, J. Mater. Sci. Lett. 14 (1995) 685.

    Google Scholar 

  17. S. A. Quinones and L. E. Murr, Phys. Stat. Sol. (a) 166 (1998) 763.

    Google Scholar 

  18. J. C. Huang and G. T. Gray, III, Acta Metall. 37(2) (1989) 3335.

    Google Scholar 

  19. J. C. Sanchez, L. E. Murr and K. P. Staudhammer, Acta Mater. 45(8) (1997) 3223.

    Google Scholar 

  20. S. Pappu, S. Sen, L. E. Murr, D. Kapoor and L. S. Magness, Mater. Sci. Engng. A 298 (2001) 144.

    Google Scholar 

  21. S. Pappu and L. E. Murr, Acta Mater. A 284 (2000) 148.

    Google Scholar 

  22. L. E. Murr, H. K. Shih and C.-S. Niou, Mater. Character. 33 (1994) 65.

    Google Scholar 

  23. L. E. Murr, C.-S. Niou, J. C. Sanchez, H. K. Shih, L. Du Plessis, S. Pappu and L. Zernow, J. Mater. Sci. 30 (1995) 2747.

    Google Scholar 

  24. L. E. Murr, C.-S. Niou, E. P. Garcia, E. Ferreyra, J. M. Rivas and J. C. Sanchez, Mater. Sci. Engng. A 222 (1997) 118.

    Google Scholar 

  25. L. E. Murr, “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley. Reading, MA, 1975) reprinted by Tech Books (1991) and available through CBLS, 119 Brentwood St., Marietta, OH 45750: FAX 740-374-8029.

    Google Scholar 

  26. L. E. Murr, in “Shock Waves and High-Strain-Rate Phenomena in Metals,” Chap. 37 edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) p. 607.

    Google Scholar 

  27. A. C. Gurevitch, L. E. Murr, H. K. Shih, C.-S. Niou, A. H. Advani, D. Manuel and L. Zernow, Mater. Character. 30 (1993) 201.

    Google Scholar 

  28. H. J. Shih, L. E. Murr, C.-S. Niou and L. Zernow, Scripta Met. et Mater. 29 (1993) 1291.

    Google Scholar 

  29. L. E. Murr, J. M. Rivas, S. Quinnes, C.-S. Niou, A. H. Advani and B. Marquez, J. Mater. Sci. 28 (1993) 4553.

    Google Scholar 

  30. J. M. Rivas, L. E. Murr, C.-S. Niou, A. H. Advani and D. J. Manuel, Scripta Met. et Mater. 27 (1992) 919.

    Google Scholar 

  31. S. A. Quinones, J. M. Rivas, E. P. Garcia and L. E. Murr, J. Mater. Sci. 31 (1996) 3921.

    Google Scholar 

  32. W. Huang, C.-S. Niou, L. E. Murr, N. L. Rupert and F. I. Grace, in “Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena,” Chap. 33 edited by L. E. Murr, K. P. Staudhammer and M. A. Meyers (Elsevier Science, Amsterdam, 1995) p. 265.

    Google Scholar 

  33. C. Kennedy and L. E. Murr, Mater. Sci. Engng. A 325 (2002) 131.

    Google Scholar 

  34. S. Pappu, C. Kennedy, L. E. Murr, L. S. Magness and D. Kapoor, Mater. Sci. Engng. A 262 (1999) 115.

    Google Scholar 

  35. E. A. Trillo, E. V. Esquivel, L. E. Murr and L. S. Magness, Mater. Character. 48 (2002) 407.

    Google Scholar 

  36. F. Greulich and L. E. Murr, Mater. Sci. Engng. 39 (1979) 81.

    Google Scholar 

  37. L. E. Murr, A. Ayala and C.-S. Niou, Ibid. A 216(1–2) (1996) 69.

    Google Scholar 

  38. L. E. Murr and F. I. Grace, Trans. Met. Soc. AIME 245 (1969) 2225.

    Google Scholar 

  39. L. E. Murr, E. A. Trillo, A. A. Bujanda and N. E. Martinez, Acta Mater. 50 (2002) 121.

    Google Scholar 

  40. L. E. Murr, A. A. Bujanda, E. A. Trillo and N. E. Martinez, J. Mater. Sci. Lett. 21 (2002) 559.

    Google Scholar 

  41. L. E. Murr, M. A. Meyers, C.-S. Niou, Y. J. Chen, S. Pappu and C. Kennedy, Acta Mater. 45(1) (1997) 157.

    Google Scholar 

  42. L. E. Murr, K. P. Staudhammer and S. S. Hecker, Metal. Trans. 13A (1982) 627.

    Google Scholar 

  43. K. P. Staudhammer, L. E. Murr and S. S. Hecker, Acta Met. 31 (1983) 267.

    Google Scholar 

  44. J. B. Cohen and J. Weertman, ibid. 11 (1963) 997, 1368.

    Google Scholar 

  45. A. W. Sleeswyk, ibid. 10 (1962) 803.

    Google Scholar 

  46. M. Hatherly and A. S. Malin, Metal Tech. 6 (1979) 308.

    Google Scholar 

  47. A. S. Malin and M. Hatherly, Metal Sci. 13 (1979) 463.

    Google Scholar 

  48. P. J. Jackson, Scripta Metall 17 (1983) 199.

    Google Scholar 

  49. G. T. Gray and P. S. Follansbee, in “Shock Waves in Condensed Matter,” edited by S. C. Schmidt and N. C. Holmes (Elsevier Science, BV, Amsterdam, 1988) p. 339.

    Google Scholar 

  50. K. P. Staudhammer, C. E. Frantz, S. S. Hecker and L. E. Murr, in “Shock-Wave and High-Strain-Rate Phenomena in Metals,” Chap. 7 edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) p. 91.

    Google Scholar 

  51. R. W. Armstrong and F. J. Zerilli, J. de Physique, Coll. C3 49 (1980) C3-259.

    Google Scholar 

  52. F. B. Foley and S. P. Howell, Trans. AIME 68 (1923) 891.

    Google Scholar 

  53. S. Thuillier and E. F. Rauch, Acta Metall. et Mater. 42(6) (1994) 1973.

    Google Scholar 

  54. B. Gonzalez, L. E. Murr, O. L. Valerio, E. V. Esquivel and H. Lopez, Mater. Character. 49(4) (2003) 359.

    Google Scholar 

  55. L. E. Murr, E. A. Trillo, S. Pappu and C. Kennedy, J. Mater. Sci. 37 (2002) 3337.

    Google Scholar 

  56. R. W. Armstrong, C. S. Coffey and W. L. Elban, Acta Metall. 30 (1982) 2111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murr, L.E., Esquivel, E.V. Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization. Journal of Materials Science 39, 1153–1168 (2004). https://doi.org/10.1023/B:JMSC.0000013870.09241.c0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000013870.09241.c0

Keywords

Navigation