Skip to main content
Log in

Pretreatment of stainless steel substrate surface for the growth of carbon nanotubes by PECVD

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes were grown from acetylene and hydrogen gas mixture directly on stainless steel plates by rf powered PECVD and then electric double layer capacitors were fabricated from them without any further treatment. It was found that suitable pretreatment of stainless steel substrates was required for the satisfactory growth of carbon nanotubes on them. In this study substrates were polished, etched in HF solution and then treated with hydrogen plasma before the growth of carbon nanotubes. SEM shows that the surface of the substrate became smooth after polishing. It was severely etched to reveal grains of stainless steel after dipping in HF solution. With hydrogen plasma treatment the grains become more rounded in shape and grew in size. When the grains size was tens of nanometers, carbon nanotubes were grown. Exposing substrates to the hydrogen plasma for 10 min or longer caused the grains to grow larger and the growth of carbon nanotubes became poorer. Carbon nanotubes grown in this study were mutiwalled and curly in shape. Capacitors made from the carbon nanotubes showed initial specific capacitance in the range of 80–100 F/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Collins and P. Avouris Sci. Amer. Dec. (2000) 38.

  2. B. E. Conway, in “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications” (Kluwer Academic, New York, 2000) p. 611.

    Google Scholar 

  3. C. Niu E. K. Sichel D. Moy and H. Tennent Appl. Phys. Lett. 70 (1997) 1480.

    Google Scholar 

  4. R. Ma J. Liang B. Wei B. Zhang C. Xu and D. Wu Bull. Chem. Soc. Jpn. 72 (1999) 2564.

    Google Scholar 

  5. E. Frackowiak K. Jurewicz S. Delpeux and F. Beguin J. Power Sourc. 97/98 (2001) 822.

    Google Scholar 

  6. A. M. Rao D. Jacques R. C. Haddon W. Zhu C. Bower and S. Jin Appl. Phys. Lett. 76 (2000) 3813.

    Google Scholar 

  7. C. Emmenegger P. Mauron A. Zuettel C. Nuetzenadel A. Schneuwly R. Gallay and L. Schlapbach Appl. Surf. Sci. 162/163 (2000) 452.

    Google Scholar 

  8. Z. P. Huang J. W. Xu Z. F. Ren J. H. Wang M. P. Siegal and P. N. Provencio Appl. Phys. Lett. 73 (1998) 3845.

    Google Scholar 

  9. N. Wang and B. D. Yao, ibid. 78 (2001) 4028.

    Google Scholar 

  10. M. H. Kuang Z. L. Wang X. D. Bai J. D. Guo and E. G. Wang, ibid. 76 (2000) 1255.

    Google Scholar 

  11. M. Yudasaka R. Kikuchi Y. Ohki E. Ota and S. Yoshimura, ibid. 70 (1997) 1817.

    Google Scholar 

  12. Y. Y. Wei G. Eres V. I. Merkulov and D. H. Lowndes, ibid. 78 (2001) 1394.

    Google Scholar 

  13. C. J. Lee J. H. Park and J. Park Chem. Phys. Lett. 323 (2000) 560.

    Google Scholar 

  14. Y. C. Choi Y. N. Shin Y. H. Lee B. S. Lee G. S. Park W. B. Choi N. S. Lee and J. M. Kim Appl. Phys. Lett. 76 (2000) 2367.

    Google Scholar 

  15. S. B. Sinnott R. Andrew D. Qian A. M. Rao Z. Mao E. C. Dickey and F. Derbyshire Chem. Phys. Lett. 315 (2000) 25.

    Google Scholar 

  16. Z. F. Ren Z. P. Huang J. W. Xu J. H. Wang P. Bush M. P. Siegal and P. N. Provencio Science 282 (1998) 1105.

    Google Scholar 

  17. M. Okai T. Muneyoshi T. Yaaguchi and S. Sasaki Appl. Phys. Lett. 77 (2000) 3468.

    Google Scholar 

  18. H. Murakami M. Hirakawa C. Tanaka and H. Yamakawa, ibid. 76 (2000) 1776.

    Google Scholar 

  19. S. Fan M. G. Chapline N. R. Franklin T. W. Tombler A. M. Cassel and H. Dai Science 283 (1999) 512.

    Google Scholar 

  20. C. Bower O. Zhou W. Zhu D. J. Werder and S. Jin Appl. Phys. Lett. 77 (2000) 2467.

    Google Scholar 

  21. C. J. Lee and J. Park, ibid. 77 (2000) 3397.

    Google Scholar 

  22. M. I. Merkulov A. V. Melechko M. A. Guillorn D. H. Lowndes and M. L. Simpson, ibid. 79 (2001) 2970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D., Kim, Y.H. & Lee, J.K. Pretreatment of stainless steel substrate surface for the growth of carbon nanotubes by PECVD. Journal of Materials Science 38, 4933–4939 (2003). https://doi.org/10.1023/B:JMSC.0000004416.60953.07

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000004416.60953.07

Keywords

Navigation