An Ant Colony Optimization Algorithm for Shop Scheduling Problems

Abstract

We deal with the application of ant colony optimization to group shop scheduling, which is a general shop scheduling problem that includes, among others, the open shop scheduling problem and the job shop scheduling problem as special cases. The contributions of this paper are twofold. First, we propose a neighborhood structure for this problem by extending the well-known neighborhood structure derived by Nowicki and Smutnicki for the job shop scheduling problem. Then, we develop an ant colony optimization approach, which uses a strong non-delay guidance for constructing solutions and which employs black-box local search procedures to improve the constructed solutions. We compare this algorithm to an adaptation of the tabu search by Nowicki and Smutnicki to group shop scheduling. Despite its general nature, our algorithm works particularly well when applied to open shop scheduling instances, where it improves the best known solutions for 15 of the 28 tested instances. Moreover, our algorithm is the first competitive ant colony optimization approach for job shop scheduling instances.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams, J., Balas, E. and Zawack, D.: The shifting bottleneck procedure for job shop scheduling, Management Sci.34(3) (1988), 391–401.

    Google Scholar 

  2. 2.

    Applegate, D. and Cook, W.: A computational study of the job-shop scheduling problem, ORSA J. Comput.3 (1991), 149–156.

    Google Scholar 

  3. 3.

    Balas, E. and Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling, Management Sci.44(2) (1998), 262–275.

    Google Scholar 

  4. 4.

    Bla`zewicz, J., Domschke, W. and Pesch, E.: The job shop scheduling problem: Conventional and new solution techniques, European J. Oper. Res.93 (1996), 1–33.

    Google Scholar 

  5. 5.

    Blum, C.: ACO applied to group shop scheduling: A case study on intensification and diversifi-cation, in M. Dorigo, G. Di Caro and M. Sampels (eds), Proceedings of ANTS 2002-From Ant Colonies to Artificial Ants: Third International Workshop on Ant Algorithms, Lecture Notes in Comput. Sci. 2463, Springer-Verlag, Berlin, 2002, pp. 14–27.

    Google Scholar 

  6. 6.

    Blum, C.: Beam-ACO-Hybridizing ant colony optimization with beam search: An application to open shop scheduling, Comput. Oper. Res.(2004), in press.

  7. 7.

    Blum, C. and Dorigo, M.: The hyper-cube framework for ant colony optimization, IEEE Trans. Systems Man Cybernet.-Part B 34(2) (2004), 1161–1172.

    Google Scholar 

  8. 8.

    Brinkkötter, W. and Brucker, P.: Solving open benchmark problems for the job shop problem, J. Scheduling4 (2001), 53–64.

    Google Scholar 

  9. 9.

    Brucker, P., Hurink, J., Jurisch, B. and Wostmann, B.: A branch & bound algorithm for the open-shop problem, Discrete Appl. Math.76 (1997), 43–59.

    Google Scholar 

  10. 10.

    Brucker, P., Jurisch, B. and Sievers, B.: A branch and bound algorithm for the job-shop scheduling problem, Discrete Appl. Math.49 (1994), 109–127.

    Google Scholar 

  11. 11.

    Carlier, J. and Pinson, E.: An algorithm for solving the job-shop problem,Management Sci.35(2) (1989), 164–176.

    Google Scholar 

  12. 12.

    Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M.: Ant system for job-shop scheduling, JORBEL-Belgian J. Oper. Res., Statist. Comput. Sci.34(1) (1994), 39–53.

    Google Scholar 

  13. 13.

    Conover, W.: Practical Nonparametric Statistics, Wiley Series in Probability and Statistics, Wiley, New York, NY, 1999.

    Google Scholar 

  14. 14.

    Dell'Amico, M. and Trubian, M.: Applying tabu search to the job-shop scheduling problem, Ann. Oper. Res.41 (1993), 231–252.

    Google Scholar 

  15. 15.

    Den Besten, M. L., Stützle, T. and Dorigo, M.: Design of iterated local search algorithms: An example application to the single machine total weighted tardiness problem, in E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl and H. Tijink (eds), Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001, Lecture Notes in Comput. Sci. 2037, Springer-Verlag, Berlin, 2001, pp. 441–452.

    Google Scholar 

  16. 16.

    Dorigo, M. and Di Caro, G.: The ant colony optimization meta-heuristic, in D. Corne, M. Dorigo and F. Glover (eds), New Ideas in Optimization, McGraw-Hill, London, 1999, pp. 11–32.

    Google Scholar 

  17. 17.

    Dorigo, M., Maniezzo, V. and Colorni, A.: Ant system: Optimization by a colony of cooperating agents, IEEE Trans. Systems Man Cybernet.-Part B 26(1) (1996), 29–41.

    Google Scholar 

  18. 18.

    Dorndorf, U. and Pesch, E.: Evolution based learning in a job shop scheduling environment, Comput. Oper. Res.22 (1995), 25–40.

    Google Scholar 

  19. 19.

    Dorndorf, U., Pesch, E. and Phan-Huy, T.: Solving the open shop scheduling problem, J. Scheduling4(3) (2001), 157–174.

    Google Scholar 

  20. 20.

    Dorndorf, U., Pesch, E. and Phan-Huy, T.: Constraint propagation and problem decomposition: A preprocessing procedure for the job shop problem, Ann. Oper. Res.115(1) (2002), 125–145.

    Google Scholar 

  21. 21.

    Fang, H.-L., Ross, P. and Corne, D.: A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems, in Proceedings of the Fifth International Conference on Genetic Algorithms(ICGA '93), Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 375–382.

    Google Scholar 

  22. 22.

    Giffler, B. and Thompson, G. L.: Algorithms for solving production scheduling problems, Oper. Res.8 (1960), 487–503.

    Google Scholar 

  23. 23.

    Guéret, C. and Prins, C.: A new lower bound for the open-shop problem, Ann. Oper. Res.92 (1999), 165–183.

    Google Scholar 

  24. 24.

    Haupt, R.: A survey of priority rule-based scheduling, OR Spektrum11 (1989), 3–16.

    Google Scholar 

  25. 25.

    Ikeda, K. and Kobayashi, S.: GA based on the UV-structure hypothesis and its application to JSP, in Proceedings of PPSN-VI, Sixth International Conference on Parallel Problem Solving from Nature, Springer-Verlag, Berlin, 2000, pp. 273–282.

    Google Scholar 

  26. 26.

    Jain, A. and Meeran, S.: Deterministic job-shop scheduling; past, present and future, European J. Oper. Res.113(2) (1999).

  27. 27.

    Lawrence, S.: Resource constraint project scheduling: An experimental investigation of heuristic scheduling techniques (Supplement), Technical Report, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, USA, 1984.

    Google Scholar 

  28. 28.

    Liaw, C.-F.: A tabu search algorithm for the open shop scheduling problem, Comput. Oper. Res.26 (1999), 109–126.

    Google Scholar 

  29. 29.

    Liaw, C.-F.: A hybrid genetic algorithm for the open shop scheduling problem, European J. Oper. Res.124 (2000), 28–42.

    Google Scholar 

  30. 30.

    Merkle, D., Middendorf, M. and Schmeck, H.: Ant colony optimization for resourceconstrained project scheduling, IEEE Trans. Evol. Comput.6(4) (2002), 333–346.

    Google Scholar 

  31. 31.

    Muth, J. F. and Thompson, G. L.: Industrial Scheduling, Prentice-Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  32. 32.

    Nowicki, E. and Smutnicki, C.: A fast taboo search algorithm for the job-shop problem, Management Sci.42(2) (1996), 797–813.

    Google Scholar 

  33. 33.

    Pfahringer, B.: A multi-agent approach to open shop scheduling: Adapting the ant-Q formalism, Technical Report TR-96-09, Österreichisches Forschungsinstitut für Artificial Intelligence, Wien, Austria, 1996.

    Google Scholar 

  34. 34.

    Prins, C.: Competitive genetic algorithms for the open-shop scheduling problem, Math. Methods Oper. Res.52(3) (2000), 389–411.

    Google Scholar 

  35. 35.

    Roy, B. and Sussmann, B.: Les problémes d'ordonnancement avec constraints dijonctives,Technical Report Note DS 9 bis, SEMA, Paris, France, 1964.

    Google Scholar 

  36. 36.

    Stützle, T.: An ant approach to the flow shop problem, in Fifth European Congress on Intelligent Techniques and Soft Computing, EUFIT'98, 1998, pp. 1560–1564.

  37. 37.

    Stützle, T. and Hoos, H. H.: MAX-MIN ant system, Future Generation Computer Systems16(8) (2000), 889–914.

    Google Scholar 

  38. 38.

    Taillard, É. D.: Benchmarks for basic scheduling problems, European J. Oper. Res.64 (1993), 278–285.

    Google Scholar 

  39. 39.

    Whizzkids: http://www.win.tue.nl/whizzkids/1997.

  40. 40.

    Yamada, T. and Nakano, R.: Job-shop scheduling by simulated annealing combined with deterministic local search, in Meta-Heuristics: Theory & Applications, Kluwer Acad. Publ., Boston, MA, 1996, pp. 237–248.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blum, C., Sampels, M. An Ant Colony Optimization Algorithm for Shop Scheduling Problems. Journal of Mathematical Modelling and Algorithms 3, 285–308 (2004). https://doi.org/10.1023/B:JMMA.0000038614.39977.6f

Download citation

  • Scheduling
  • group shop
  • job shop
  • open shop
  • ant colony optimization