Skip to main content
Log in

Abstract

Soft Supramolecular Materials (SSM) are multicomponent materials formed bythe bulk supramolecular assembly/aggregation of building units into a regularstructure, with stronger bonding within building units and weaker bondingbetween them. The nature of the building units may vary from simple moleculesto nanoparticles, and the forces linking the units together may vary from coordinativeto van der Waals. Recently SSM have attracted a great deal of attention due to theirwide variability, easy conversion from one structure to another, and active responseto external stimuli. It seems evident that the progress in the chemistry of SSMpredestines the appearance of a new generation of functional and ``smart'' materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.V. Olson: Science 288, 993 (2000).

    Google Scholar 

  2. C.J. Pedersen, J.M. Lehn, and D.J. Cram: J. Inclusion Phenom. 6, 337, 351, 397 (1988).

    Google Scholar 

  3. H.M. Powell: J. Chem. Soc. 61 (1948).

  4. J.L. Atwood, J.E.D. Davies, and D.D. MacNicol (eds.), Inclusion Compounds, Academic Press, London (1984).

    Google Scholar 

  5. J.L. Atwood, J.E.D. Davies, D.D. MacNicol, and F. Vogtle (eds.), Comprehensive Supramolecular Chemistry, Pergamon, Oxford (1996).

    Google Scholar 

  6. Yu.A. Dyadin, I.S. Terekhova, T.V. Rodionova, and D.V. Soldatov: J. Struct. Chem. 40, 645 (1999), and references therein.

    Google Scholar 

  7. C.J. Pedersen: J. Am. Chem. Soc. 89, 2495, 7017 (1967).

    Google Scholar 

  8. D. Londono, W.F. Kuhs, and J.L. Finney: Nature 332, 141 (1988).

    Google Scholar 

  9. Yu.A. Dyadin, E.G. Larionov, E.Ya. Aladko, A.Yu. Manakov, F.V. Zhurko, T.V. Mikina, V.Yu. Komarov, and E.V. Grachev: J. Struct. Chem. 40, 790 (1999), and references therein.

    Google Scholar 

  10. Yu.A. Dyadin: Supramol. Chem. 6, 59 (1995).

    Google Scholar 

  11. A.I. Kitaigorodskii, Organic Chemical Crystallography, Consultant's Bureau, New York (1961).

    Google Scholar 

  12. Yu.A. Dyadin and N.V. Kislykh: Russ. J. Phys. Chem. 66(1), 60 (1992).

    Google Scholar 

  13. D.V. Soldatov and J.A. Ripmeester: Stud. Surf. Sci. Catal. 141, 353 (2002), and references therein

    Google Scholar 

  14. M. Miyata and K. Takemoto: J. Macromol. Sci. A 12, 637 (1978).

    Google Scholar 

  15. L.R. MacGillivray, J.L. Reid, and J.A. Ripmeester: J. Am. Chem. Soc. 122, 7817 (2000).

    Google Scholar 

  16. H. Reuter: Angew. Chem. Int. Ed. Engl. 31, 1185 (1992).

    Google Scholar 

  17. G.R. Desiraju: Angew. Chem. Int. Ed. Engl. 34, 2311 (1995).

    Google Scholar 

  18. O.M. Yaghi, G. Li, and H. Li: Nature 378, 703 (1995).

    Google Scholar 

  19. J.F. Stoddart (ed.): Acc. Chem. Res. 34 (2001), no. 6 (Special Issue).

  20. G. Alberti and T. Bein (eds.), Comprehensive Supramolecular Chemistry; Solid-state Supramolecular Chemistry: Two-and Three-dimensional Inorganic Networks, Vol. 7, Pergamon Press, Oxford (1996).

    Google Scholar 

  21. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck: Nature 359, 710 (1992).

    Google Scholar 

  22. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C. T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mc-Cullen, J.B. Higgins, and J.L. Schlenker: J. Am. Chem. Soc. 114, 10834 (1992).

    Google Scholar 

  23. C. Janiak: Angew. Chem. Int. Ed. Engl. 36, 1431 (1997).

    Google Scholar 

  24. Y. Aoyama: Top. Curr. Chem. 198, 131 (1998).

    Google Scholar 

  25. P.J. Langley and J. Hulliger: Chem. Soc. Rev. 28, 279 (1999).

    Google Scholar 

  26. R.E. Newnham: Mater. Res. Soc. Bull. 22(5), 20 (1997).

    Google Scholar 

  27. D.D. MacNicol, F. Toda, and R. Bishop (eds.), Comprehensive Supramolecular Chemistry; Solid-state Supramolecular Chemistry: Crystal Engineering, Vol. 6, Pergamon Press: Oxford, 1996.

    Google Scholar 

  28. H. Eckert, M. Ward (eds.): Chem. Mater. 13 (2001), no. 10 (Special Issue).

  29. G. Chowdhury, B. Kruczek, and T. Matsuura (eds.), Polyphenylene Oxide and Modified Polyphenylene Oxide Membranes. Gas, Vapour and Liquid Separation, Kluwer: Boston (2001).

    Google Scholar 

  30. F. Vogtle, K.N. Houk, H. Kessler, and J.-M. Lehn (eds.), Dendrimers II: Architecture, Nanostructure and Supramolecular Chemistry. In Top. Curr. Chem., Vol. 210, Springer Verlag, New York (2000).

  31. M. Shimomura and T. Sawadaishi: Curr. Opin. Coll. Int. Sci. 6, 11 (2001).

    Google Scholar 

  32. J.H. Esch and B.L. Feringa: Angew. Chem. Int. Ed. Engl. 39, 2263 (2000).

    Google Scholar 

  33. J.W. Steed and J.L. Atwood: Supramolecular Chemistry, John Wiley & Sons, New York (2000).

    Google Scholar 

  34. Y. Murakami (ed.): Comprehensive Supramolecular Chemistry; Supramolecular Reactivity and Transport: Bioorganic Systems, Vol. 4, Pergamon Press: Oxford, 1996.

    Google Scholar 

  35. K.S. Suslick (ed.): Comprehensive Supramolecular Chemistry; Supramolecular Reactivity and Transport: Bioinorganic Systems, Vol. 5, Pergamon Press: Oxford, 1996.

    Google Scholar 

  36. M. Lal, P.J. Lillford, V.M. Naik, and V. Prakash (eds.), Supramolecular and Colloidal Structures in Biomaterials and Biosubstrates, Imperial College Press, London (2000).

    Google Scholar 

  37. E.D. Sloan: Clathrate Hydrates of Natural Gases, Marcel Dekker, New York (1990).

    Google Scholar 

  38. M.F. Perutz: Molecular Anatomy, Physioligy and Pathology of Hemoglobin. In G. Stamatoyannopoulos, A.W. Nienhuis, P. Leder, and P.W. Majerus (eds.), Molecular Basis of Blood Diseases, Saunders, Philadelphia (1987).

    Google Scholar 

  39. J. Lipkowski, D.V. Soldatov, N.V. Kislykh, N.V. Pervukhina, and Yu.A. Dyadin: J. Inclusion Phenom. 17, 305 (1994).

    Google Scholar 

  40. J. Lipkowski and D.V. Soldatov: J. Inclusion Phenom. 18, 317 (1994).

    Google Scholar 

  41. H. Krupitsky, Z. Stein, and I. Goldberg: J. Inclusion Phenom. 18, 177 (1994).

    Google Scholar 

  42. S.A. Gromilov, I.A. Baidina, and G.I. Zharkova: J. Struct. Chem. 38, 792 (1997).

    Google Scholar 

  43. W. Abriel, A. Bois, M. Zakrzewski, and M.A. White: Can. J. Chem. 68, 1352 (1990).

    Google Scholar 

  44. G. Allegra, M. Farina, A. Immirzi, A. Colombo, U. Rossi, R. Broggi, and G. Natta: J. Chem. Soc. B, 1020 (1967).

  45. A.A. Freer, D.D. MacNicol, P.R. Mallinson, and I. Vallance: Tetrahedron Lett. 33, 261 (1992).

    Google Scholar 

  46. J. Lipkowski: Inclusion compounds formed by Werner MX2A4 coordination complexes. In J.L. Atwood, J.E.D. Davies and D.D. MacNicol (eds.), Inclusion Compounds, Vol. 1, Academic Press, London (1984), pp. 59-103.

    Google Scholar 

  47. J. Hanotier and P. Radzitski: Inclusion compounds of diisothiocyanatotetrakis(α-arylalkylamine) nickel(II) complexes. In J.L. Atwood, J.E.D. Davies, D.D. MacNicol (eds.), Inclusion Compounds, Vol. 1, Academic Press, London (1984), pp. 104-134.

    Google Scholar 

  48. K.T. Holman, A.M. Pivovar, J.A. Swift, and M.D.Ward: Acc. Chem. Res. 34, 107 (2001).

    Google Scholar 

  49. J.A. Swift, A.M. Pivovar, A.M. Reynolds, and M.D. Ward: J. Am. Chem. Soc. 120, 5887 (1998).

    Google Scholar 

  50. T. Iwamoto: J. Inclusion Phenom. 24, 61 (1996).

    Google Scholar 

  51. I. Goldberg: Chem. Eur. J. 6, 3863 (2000).

    Google Scholar 

  52. D.V. Soldatov, G.D. Enright, and J.A. Ripmeester: Supramol. Chem. 11, 35 (1999).

    Google Scholar 

  53. D.V. Soldatov and J.A. Ripmeester: Chem. Eur. J. 7, 2979 (2001).

    Google Scholar 

  54. D.V. Soldatov, G.D. Enright, and J.A. Ripmeester: Chem. Mater. 14, 348 (2002).

    Google Scholar 

  55. J.S. Miller and A.J. Epstein: Angew. Chem. Int. Ed. Engl. 33, 385 (1994).

    Google Scholar 

  56. P.H. Dinolfo and J.T. Hupp: Chem. Mater. 13, 3113 (2001).

    Google Scholar 

  57. Y. Kakizawa and K. Kataoka: Adv. Drug Deliv. Rev. 54, 203 (2002).

    Google Scholar 

  58. R.H. Müller, K. Mäder, and S. Gohla: Eur. J. Pharm. Biopharm. 50, 161 (2000).

    Google Scholar 

  59. F. Franks: The Properties of Ice. In F. Franks (ed.), Water. A Comprehensive Treatise, Vol. 1, Plenum Press: New York-London (1972), pp. 115-149.

    Google Scholar 

  60. D.W. Davidson: Clathrate Hydrates. In F. Franks (ed.), Water. A Comprehensive Treatise, Vol. 2, Plenum Press: New York-London (1973), pp. 115-234.

    Google Scholar 

  61. D.V. Soldatov, A.T. Henegouwen, G.D. Enright, C.I. Ratcliffe, and J. A. Ripmeester: Inorg. Chem. 40, 1626 (2001).

    Google Scholar 

  62. B.T. Ibragimov, S.A. Talipov, and T.F. Aripov: J. Inclusion Phenom. 17, 317 (1994).

    Google Scholar 

  63. A.T. Ung, D. Gizachew, R. Bishop, M.L. Scudder, I.G. Dance, and D.C. Craig: J. Am. Chem. Soc. 117, 8745 (1995).

    Google Scholar 

  64. V.A. Russel, C.C. Evans, W. Li, and M.D. Ward: Science 276, 575 (1997).

    Google Scholar 

  65. S.A. Allison and R.M. Barrer: J. Chem. Soc. A, 1717 (1969).

  66. C.J. Kepert and M.J. Rosseinski: Chem. Commun., 375 (1999).

  67. S. Noro, S. Kitagawa, M. Kondo, and K. Seki: Angew. Chem. Int. Ed. Engl. 39, 2082 (2000).

    Google Scholar 

  68. O. Kristiansson and L.E. Tergenius: J. Chem. Soc., Dalton Trans., 1415 (2001).

  69. J.-H. Liao, P.-L. Chen and C.-C. Hsu: J. Phys. Chem. Sol. 62, 1629 (2001).

    Google Scholar 

  70. Y.-H. Liu, Y.-L. Lu, H.-L. Tsai, J.-C. Wang, and K.-L. Lu: J. Solid State Chem. 158, 315 (2001).

    Google Scholar 

  71. K. Seki: Langmuir 18, 2441 (2002).

    Google Scholar 

  72. Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, and J. Semanscin: Micropor. Mesopor. Mater. 55, 217 (2002).

    Google Scholar 

  73. T. Ueda, T. Eguchi, N. Nakamura, and R.E. Wasylishen: J. Phys. Chem. B 107, 180 (2003).

    Google Scholar 

  74. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, and Y. Yan: Micropor. Mesopor. Mater. 58, 105 (2003).

    Google Scholar 

  75. Y. Ichiraki, S.A. Stern, and T. Nakagawa: J. Membr. Sci. 34, 5 (1987).

    Google Scholar 

  76. L.C. Witchey-Lakshmanan, H.B. Hopfenberg, and R.T. Chern: J. Membr. Sci. 48, 321 (1990).

    Google Scholar 

  77. V.V. Volkov: Polim. J. 23, 457 (1991).

    Google Scholar 

  78. R. Srinivasan, S.R. Auvil, and P.M. Burban: J. Membr. Sci. 86, 67 (1994).

    Google Scholar 

  79. O.M. Ilinitch, V.B. Fenelonov, A.A. Lapkin, L.G. Okkel, V.V. Terskikh, and K.I. Zamaraev: Micropor. Mesopor. Mater. 31, 97 (1999).

    Google Scholar 

  80. S.A. Miller, E. Kim, D.H. Gray, and D.L. Gin: Angew. Chem. Int. Ed. Engl. 38, 3022 (1999).

    Google Scholar 

  81. S. Kitagawa and M. Kondo: Bull. Chem. Soc. Jpn. 71, 1739 (1998).

    Google Scholar 

  82. B.F. Abrahams, P.A. Jackson, and R. Robson: Angew. Chem. Int. Ed. Engl. 37, 2656 (1998).

    Google Scholar 

  83. A.J. Blake, N.R. Champness, A.N. Khlobystov, S. Parsons, and M. Schroder: Angew. Chem. Int. Ed. Engl. 39, 2317 (2000).

    Google Scholar 

  84. M. Kondo, M. Shimamura, S. Noro, S. Minakoshi, A. Asami, K. Seki, and S. Kitagawa: Chem. Mater. 12, 1288 (2000).

    Google Scholar 

  85. K.S. Min and M.P. Suh: J. Am. Chem. Soc. 122, 6834 (2000).

    Google Scholar 

  86. L.C. Tabares, J.A.R. Navarro, J.M. Salas: J. Am. Chem. Soc. 123, 383 (2001).

    Google Scholar 

  87. G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, and J.D. Cashion: Science 298, 1762 (2002).

    Google Scholar 

  88. E.J. Cussen, J.B. Claridge, M.J. Rosseinsky, and C.J. Kepert: J. Am. Chem. Soc. 124, 9574 (2002).

    Google Scholar 

  89. J.Y. Lu and A.M. Babb: Chem. Commun., 1340 (2002).

  90. D.V. Soldatov, E.V. Grachev, and J.A. Ripmeester: Cryst. Growth Des. 2, 401 (2002).

    Google Scholar 

  91. S.J. Kim and D.H. Reneker: Polim. Bull. 31, 367 (1993).

    Google Scholar 

  92. M. Albrecht, M. Lutz, A. L. Spek, and G. Koten: Nature 406, 970 (2000).

    Google Scholar 

  93. A.V. Nossov, D.V. Soldatov, and J.A. Ripmeester: J. Am. Chem. Soc. 123, 3563 (2001).

    Google Scholar 

  94. D.V. Soldatov and J.A. Ripmeester: Chem. Mater. 12, 1827 (2000).

    Google Scholar 

  95. D.V. Soldatov, J.A. Ripmeester, S.I. Shergina, I.E. Sokolov, A.S. Zanina, S.A. Gromilov, and Yu.A. Dyadin: J. Am. Chem. Soc. 121, 4179 (1999).

    Google Scholar 

  96. A.Yu. Manakov, D.V. Soldatov, J.A. Ripmeester, and J. Lipkowski: J. Phys. Chem. B 104, 12111 (2000).

    Google Scholar 

  97. A. Stadler-Szoke and J. Szejtli: Acta Pharm. Hung. 49, 30 (1979).

    Google Scholar 

  98. K. Tomono, G. Hiroko, M. Okamura, H. Ueda, T. Saitoh, and T. Nagai: Yakuzaigaku 48, 322 (1988).

    Google Scholar 

  99. P.M. Zorkii and A.E. Razumaeva: J. Struct. Chem. 20, 390 (1979).

    Google Scholar 

  100. J. Bernstein: Conformational polymorphism. In G.R. Desiraju (ed.), Organic Solid State Chemistry; Studies in Organic Chemistry 32, Elsevier, Amsterdam (1987), pp 471-518.

    Google Scholar 

  101. L.R. Nassimbeni, M.L. Niven, and M.W. Taylor: Inorg. Chim. Acta 132, 67 (1987).

    Google Scholar 

  102. L.R. Nassimbeni, M.L. Niven, and M.W. Taylor: J. Chem. Soc., Dalton Trans., 119 (1989).

  103. D.V. Soldatov, E.V. Grachev, and J. Lipkowski: J. Struct. Chem. 37, 658 (1996).

    Google Scholar 

  104. D.V. Soldatov and J.A. Ripmeester: Supramol. Chem. 12, 357 (2001).

    Google Scholar 

  105. L.J. Barbour and J.L. Atwood: Chem. Commun., 2020 (2001).

  106. R. Guilard, O. Siri, A. Tabard, G. Broeker, P. Richard, D.J. Nurco, and K.M. Smith: J. Chem. Soc., Dalton Trans., 3459 (1997).

  107. R.P. Adams, H.C. Allen, U. Rychlewska, and D.J. Hodgson: Inorg. Chim. Acta 119, 67 (1986).

    Google Scholar 

  108. L.R. Nassimbeni, M.L. Niven, and K.J. Zemke: Acta Crystallogr. B42, 453 (1986).

    Google Scholar 

  109. J.L. Atwood, S.G. Bott, A.W. Coleman, K.D. Robinson, S.B. Whetstone, and C.M. Means: J. Am. Chem. Soc. 109, 8100 (1987).

    Google Scholar 

  110. P.C. Junk and J.L. Atwood: J. Chem. Soc., Dalton Trans. 1551 (1995).

  111. G.K.H. Shimizu, G.D. Enright, G.S. Rego, and J.A. Ripmeester: Can. J. Chem. 77, 313 (1999).

    Google Scholar 

  112. J.L. Atwood, L.J. Barbour, and A. Jerga: J. Am. Chem. Soc. 124, 2122 (2002).

    Google Scholar 

  113. M.M. Colin and H. Gaultier de Claubry: Ann. Chim. 90, 87 (1814).

    Google Scholar 

  114. R.E. Rundle and D. French: J. Am. Chem. Soc. 65, 1707 (1943).

    Google Scholar 

  115. C.D. West: J. Chem. Phys. 15, 689 (1947).

    Google Scholar 

  116. E. Cariati, X. Bu, and P.C. Ford: Chem. Mater. 12, 3385 (2000).

    Google Scholar 

  117. Yu. A. Dyadin, N.V. Kislykh: Mendeleev Commun., 134 (1991).

  118. J. Lipkowski, D.V. Soldatov, N.V. Kislykh, N.V. Pervukhina, and Yu.A. Dyadin: J. Inclusion Phenom. 17, 305 (1994).

    Google Scholar 

  119. Yu.A. Dyadin: Russ. J. Coord. Chem. 22, 402 (1996).

    Google Scholar 

  120. Yu.A. Dyadin, D.V. Soldatov, V.A. Logvinenko, and J. Lipkowski: J. Coord. Chem. 37, 63 (1996).

    Google Scholar 

  121. J. Lipkowski, N.V. Kislykh, Yu.A. Dyadin, and L.A. Sheludyakova: J. Struct. Chem. 40, 772 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldatov, D. Soft Supramolecular Materials. Journal of Inclusion Phenomena 48, 3–9 (2004). https://doi.org/10.1023/B:JIPH.0000016597.92297.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JIPH.0000016597.92297.54

Navigation