Skip to main content
Log in

Host—guest Complementarity and Crystal Packing of Intercalated Layered Structures

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Intercalated layered structures are analyzed in order to estimate the rules governing their crystal packing. An overview is given on structural types of layered intercalates based on various types of host structures and guest species. The factors describing the host–guest complementarity in intercalated layered structures like: the character of active sites, the host–guest and guest–guest interactions, the size of guests and topology of layers are investigated and their effect on crystal packing is illustrated on examples. Special attention will be paid to the conditions for the regular ordering of guests in the interlayer space, as the requirement of structure ordering is of great importance in design of intercalates for special applications, where one has to control the interlayer porosity or electronic properties of guest molecules etc. A method of structure analysis based on a combination of molecular modeling and experiments has been worked out for intercalates. Molecular modeling (force field calculations) in conjunction with experiments (diffraction methods and vibration spectroscopy) enables us to analyze the disordered intercalated structures, where the conventional diffraction analysis fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Jacobson: Intercalation reaction of layered compounds, in A.K. Cheetham and P. Day (eds.), Solid State Chemistry Compounds, Clarendon Press, Oxford (1992), p. 182.

    Google Scholar 

  2. R. Schölhorn: in J.L. Atwood, J.E.D. Davies, and D.D. MacNicol (eds.), Inclusion Compounds, Academic Press, New York (1984), p. 249.

    Google Scholar 

  3. A. Lerf: Intercalation compounds in layered host lattices: Supramolecular chemistry in nanodimensions, in H.S. Nalwa (ed.), Handbook of Nanostructured Materials and Nanotechnology, Vol. 5, Academic Press, New York (2000), p. 5.

    Google Scholar 

  4. M. Ogawa and K. Kuroda: Chem. Rev. 95, 399 (1995).

    Google Scholar 

  5. G. Lagaly: Solid State Ionics 22, 43 (1986).

    Google Scholar 

  6. A. Clearfield: Inorganic Ion Exchange Material, CRC Press Inc., Boca Raton, FL (1982), p. 1.

    Google Scholar 

  7. G. Alberti: in P.A. Williams and M.J. Hudson (eds.), Recent Developments in Ion Exchange, Elsevier Applied Science, London (1987), p. 233.

    Google Scholar 

  8. U. Costantino: Chem. Soc. Dalton Trans., 402 (1979).

  9. S.A. Solin: in I. Prigogine and Stuart A. Rice (eds.), Advances in Chemical Physics, John Wiley & Sons, New York (1982) p. 455.

    Google Scholar 

  10. J.M. Lehn: Angew. Chem. Int. Ed. Engl. 29, 1304 (1990).

    Google Scholar 

  11. A. Nangia and G.R. Desiraju: Acta Cryst. A54, 934 (1998).

    Google Scholar 

  12. A. Gavezzotti: J. Am. Chem. Soc. 113, 4622 (1991).

    Google Scholar 

  13. Cerius2 documentation, June 2000, Molecular Simulations Inc., San Diego (2000).

  14. B. Koudelka and P. Čapková: J. Mol. Model 8, 184 (2002).

    Google Scholar 

  15. P. Suortti: J. Appl. Cryst. 5, 325 (1972).

    Google Scholar 

  16. P. Comba and T.W. Hambley: Molecular Modeling of Inorganic Compounds, VCH, Weinheim, New York, Basel, Cambridge, Tokyo (1995), p. 4.

    Google Scholar 

  17. A.K. Rappé and W.A. Goddard III: J. Phys. Chem. 95, 3358 (1991).

    Google Scholar 

  18. P.P. Ewald: Ann Phys (Leipzig) 64, 253 (1921).

    Google Scholar 

  19. N. Karasawa and W.A. Goddard III: J. Phys. Chem. 93, 7320 (1989).

    Google Scholar 

  20. D. Frenkel and B. Smit: Understanding Molecular Simulation, Academic Press, San Diego, New York, London (1996) p. 19.

    Google Scholar 

  21. P. Erk: Crystal Engineering: From Molecules and Crystals to Materials, Kluwer Academic Publishers, Netherlands (1999), p. 143.

    Google Scholar 

  22. P. Verwer and F.J.J. Leusen: Computer simulation to predict possible crystal polymorphs, in K.B. Lipkowitz and D.B. Boyd (eds.), Reviews in Computational Chemistry, Vol. 12, Wiley-VCH, New York, p. 327.

  23. K.D.M. Harris, B.M. Kariuki, and R.L. Johnston: Advances in structure analysis, in R. Kužel and J. Hašek (eds.), Czech and Slovak Crystallographic Association, Prague (2001) p. 190.

    Google Scholar 

  24. M. Pospíšil, P. Čapková, D. Měřínská, Z. Maláč, and J. Šimoník: Journal of Colloid and Interface Science 236, 127 (2001).

    Google Scholar 

  25. M. Pospíšil, P. Čapková, Z. Weiss, Z. Maláč, and J. Šimoník: Journal of Colloid and Interface Science 245, 126 (2002).

    Google Scholar 

  26. P. Čapková, M. Trchová, P. Matějka, J. Votinský, and H. Schenk: J. Mol. Model 4, 284 (1998).

    Google Scholar 

  27. L. Beneš, K. Melánová, V. Zima, M. Trchová, E. Uhlířová, and P. Matějka: Eur. J. Inorg. Chem. 3, 713 (2001).

    Google Scholar 

  28. A. Hauptmann, A. Lerf, and W. Biberacher: Z. Naturforsch. 51b, 1571 (1996).

    Google Scholar 

  29. P. Čapková, M. Pospíšil, and A. Lerf: Solid State Sciences 4, 671 (2002).

    Google Scholar 

  30. K. Goubitz, P. Čapková, K. Melánová, W. Molleman, and H. Schenk: Acta Crystallographica B, Structural Science B57, 178 (2001).

    Google Scholar 

  31. L. Beneš, J. Votinský, J. Kalousová, and K. Handlíř: Inorg. Chim. Acta 176(2), 255 (1990).

    Google Scholar 

  32. L. Beneš, J. Kalousová, J. Votinský, and R. Hyklová: Inorg. Chim. Acta 177(1), 71 (1990).

    Google Scholar 

  33. L. Beneš, V. Zima, J. Kalousová, and J. Votinský: Collect. Czech. Chem. Commun. 59, 1616 (1994).

    Google Scholar 

  34. L. Beneš, K. Melánová, V. Zima, J. Kalousová, and J. Votinský: Inorg. Chem. 36, 2850 (1997).

    Google Scholar 

  35. V. Zima, L. Beneš, and K. Melánová, Solid State Ionics 106, 285 (1998).

    Google Scholar 

  36. J. Kalousová, J. Votinský, L. Beneš, K. Melánová, and V. Zima: Collect. Czech. Chem. Commun. 63, 1 (1998).

    Google Scholar 

  37. H.R. Tietze: A. J. Chem. 34, 2035 (1981).

    Google Scholar 

  38. M. Tachez, F. Theobald, J. Bernard, and A.W. Hewat: Revue de Chemie Minerale 19, 291 (1982).

    Google Scholar 

  39. P. Čapková, D. Janeba, L. Beneš, K. Melánová, and H. Schenk: J. Mol. Model. 4, 150 (1998).

    Google Scholar 

  40. P. Čapková, M. Trchová, P. Matějka, L. Beneš, K. Melánová, D. Janeba, and H. Schenk: in R. Kužel and J. Hašek (eds.), Advances in Structure Analysis, Czech and Slovak Crystallographic Association, CSCA, Prague (2001), p. 285.

    Google Scholar 

  41. J.M. Troup and A. Clearfield: Inorganic Chemistry 16, 3311 (1977).

    Google Scholar 

  42. P. Čapková, L. Beneš, K. Melánová, and H. Schenk: J. Appl. Cryst. 31, 845 (1998).

    Google Scholar 

  43. P. Čapková and J. Walter: J. Solid State Chem. 149, 68 (2000).

    Google Scholar 

  44. J. Walter, H. Shioyama, Y. Sawada, and S. Hara: Carbon 36, 1277 (1998).

    Google Scholar 

  45. J. Walter: Solid State Ionics, 101–103, 833 (1997).

    Google Scholar 

  46. J. Walter and H.P. Boehm: Carbon 33, 1121 (1995).

    Google Scholar 

  47. P. Behrens and W. Metz: Synth. Met. 34, 223 (1989).

    Google Scholar 

  48. J. Walter and H. Shioyama: J. Phys.: Condens. Matter 11, L21 (1999).

    Google Scholar 

  49. J. Walter: Synth. Met. 89, 39 (1997).

    Google Scholar 

  50. J. Walter and M. Metz: Mikrochim. Acta 127, 183 (1997).

    Google Scholar 

  51. P. Behrens, J. Ehrich, W. Metz, and W. Niemann: Synth. Met. 34, 199 (1989).

    Google Scholar 

  52. G.R. Hennig, in F.A. Cotton (ed.), Progress in Inorganic Chemistry, Vol. 1, Interscience, New York (1959), p. 125.

    Google Scholar 

  53. G.W. Brindley: in G.W. Brindley and G. Brown (eds.), Crystal Structures of Clay Minerals and their X-Ray Identification, Mineralogical Society, Monograph No. 5, London (1980), p. 125.

    Google Scholar 

  54. P. Čapková, M. Pospíšil, J. Miehé-Brendlé, M. Trchová, Z. Weiss, and R. Le Dred: J. Mol. Model. 6, 600 (2000).

    Google Scholar 

  55. D.J. Pruissen, P. Čapková, R.A.J. Driessen, and H. Schenk: Applied Catalysis A General 193, 103 (2000).

    Google Scholar 

  56. P. Čapková, R.A.J. Driessen, H. Schenk, and Z. Weiss: J. Mol. Model. 3, 467 (1997).

    Google Scholar 

  57. P. Čapková, R.A.J. Driessen, M. Numan, H. Schenk, Z.Weiss, and Z. Klika: Clays Clay Miner. 46, 232 (1998).

    Google Scholar 

  58. J. Breu, A. Stoll, K.G. Lange, and T. Probst: Phys. Chem. Chem. Phys. 3, 1232 (2001).

    Google Scholar 

  59. TJ. Pinnavaia, M.S. Tzou, S.D. Landau, and R.H. Raythatha: J. Mol. Catal. 27, 195 (1984).

    Google Scholar 

  60. R.A. Schoonheydt, H. Leeman, A. Scorpion, I. Lenotte, and P. Grobet: Clays Clay Miner. 42, 518 (1994).

    Google Scholar 

  61. F. Figueras, Z. Klapyta, P. Massiani, Z. Mountassir, D. Tichit, and F. Fajula: Clays Clay Miner. 38, 257 (1990).

    Google Scholar 

  62. P.B. Malla and S. Komarneni: Clays Clay Miner. 41, 472 (1993).

    Google Scholar 

  63. D. Zhao, G. Wang, Y. Yang, X. Guo, Q. Wang, and J. Ren: Clays Clay Miner. 41, 317 (1993).

    Google Scholar 

  64. G. Chen, B. Han, and H. Yan: J. Colloid Interf. Sci. 201, 158 (1998).

    Google Scholar 

  65. A. Tahani, M. Karroua, H. Van Damme, P. Levitz, and F. Bergaya: J. Colloid Interf. Sci. 216, 242 (1999).

    Google Scholar 

  66. M. Ogawa, T. Aono, K. Kuroda, and C. Kato: Langmuir 9, 1529 (1993).

    Google Scholar 

  67. J.F. Lee, M.M. Mortland, CT. Chiou, D.E. Kile, and S.A. Boyd: Clays Clay Miner. 38, 113 (1990).

    Google Scholar 

  68. A.G. Galarneau, A. Barodawalla, and T.J. Pinnavaia: Chem. Commun., 1661 (1997).

  69. M. Polverejan, Y. Liu, and T.J. Pinnavaia: in A. Sayari (ed.), Studies in Surface Science and Catalysts, Vol. 129, Elsevier Science B (2000), p. 401.

  70. A. Okada and A. Usuki: Materials Science and Engineering C3, 109 (1995).

    Google Scholar 

  71. A. Vahedi-Faridi and S. Guggenheim: Clays Clay Miner. 45, 859 (1997).

    Google Scholar 

  72. A. Vahedi-Faridi and S. Guggenheim: Clays Clay Miner. 47, 338 (1999).

    Google Scholar 

  73. P.G. Slade and P.A. Stone: Clays Clay Miner. 32, 223 (1984).

    Google Scholar 

  74. P. Čapková, J.V. Burda, Z. Weiss, and H. Schenk: J. Mol. Model. 5, 8 (1999).

    Google Scholar 

  75. J. Mering: in J.E. Gieseking (ed.), Soil Components, Vol. 2, Inorganic Components, Springer-Verlag, New York (1975), p. 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Çapková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çapková, P., Schenk, H. Host—guest Complementarity and Crystal Packing of Intercalated Layered Structures. Journal of Inclusion Phenomena 47, 1–10 (2003). https://doi.org/10.1023/B:JIPH.0000003826.01697.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JIPH.0000003826.01697.42

Navigation