Skip to main content
Log in

Evaluation of Mixing Rules for Dielectric Constants of Composite Dielectrics by MC-FEM Calculation on 3D Cubic Lattice

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Effective dielectric constants of diphase composite dielectrics are simulated by Monte Carlo-finite element method on three-dimensional lattice. Effective dielectric constants with coefficients of variation less than 5.5% are obtained for different ratios of dielectric constants of the two phases, ranging from 10 to 700. Various mixing rules and equations are fitted to these data and the accuracy and relevance of the fits are thoroughly examined. Modified logarithmic rule loses its physical basis when fitted to three-dimensional data. As the ratio of dielectric constants of the two phases increases, the parameters in general Lichterecker mixing rule, general Bruggeman's symmetric equation, general effective media equation and its modified form all increase or decrease monotonously. General effective media equation and its modified form give the best fits to the effective dielectric constants simulated. The simulation results for the dielectric constants of some composite systems are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Shrout and A. Halliyal, Am. Ceram. Soc. Bull., 66, 704 (1987).

    Google Scholar 

  2. J. Chen, Microstructure-Property Relations in the Complex Perovskite Lead Magnesium Niobate, Ph.D. Thesis, Leigh University, Pennsylvania State, USA (1991).

  3. A. Nakano, D.P. Cann, and T.R. Shrout, Jpn. J. Appl. Phys. A, 36, 1136 (1997).

    Google Scholar 

  4. J. Wu and D.S. McLachlan, Phys. Rev. B, 56, 1236 (1997).

    Google Scholar 

  5. J. Wu and D.S. McLachlan, Phys. Rev. B, 58, 14880 (1998).

    Google Scholar 

  6. D.S. McLachlan, J. Phys. C: Solid State Phys., 20, 865 (1987).

    Google Scholar 

  7. D.J. Bergman and D. Strout, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, San Diego, 1992), p. 147.

    Google Scholar 

  8. D.S. McLanchlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc., 73, 2187 (1990).

    Google Scholar 

  9. P.C. Sturman and R.L. McCullough, J. Appl. Phys., 72, 2883 (1992).

    Google Scholar 

  10. H.E. Roman, A. Bunde, and W. Dieterich, Phys. Rev. B., 34, 3439 (1986).

    Google Scholar 

  11. M. Bartkowiak, G.D. Mahan, F.A. Modine et al., J. Appl. Phys., 80, 6516 (1996).

    Google Scholar 

  12. K. Wakino, T. Okada, N. Yoshida et al., J. Am. Ceram. Soc., 76, 2588 (1993).

    Google Scholar 

  13. X. Zhao and Y. Wu, J. Mater. Sci., 39, 291 (2004).

    Google Scholar 

  14. E. Tuncer, Y.V. Serdyuk, and S.M. Gubanski, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 809 (2002).

    Google Scholar 

  15. B. Sareni, L. Krahenbuhl, and A. Beroual, J. Appl. Phys., 80, 1688 (1996).

    Google Scholar 

  16. K. Lichtenecker, Phys. Z., 27, 115 (1926).

    Google Scholar 

  17. Z. Hashin and S. Shtrikman, J. Appl. Phys., 33, 3125 (1962).

    Google Scholar 

  18. D.S. McLanchlan, J.H. Hwang, and T.O. Mason, Journal of Electroceramics, 5, 37 (2000).

    Google Scholar 

  19. D.S. McLanchlan, Journal of Electroceramics, 5, 93 (2000).

    Google Scholar 

  20. I. Webman, J. Jortner, and M.H. Cohen, Phys. Rev. B, 15, 5712 (1977).

    Google Scholar 

  21. F. Brouers, J. Phys. C: Solid State Phys., 19, 7183 (1987).

    Google Scholar 

  22. A. Bunde and W. Dieterich, Journal of Electroceramics, 5, 81 (2000).

    Google Scholar 

  23. D.S. McLachlan and J. Chen, J. Phys.: Condens. Matter, 4, 4557 (1992).

    Google Scholar 

  24. J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, Inc., New York, 1993), p. 256.

    Google Scholar 

  25. Y. Yuan, Numerical Method For Nonlinear Programming (Shanghai Scientific & Technical Publishers, Shanghai, 1993), p. 207.

    Google Scholar 

  26. D.S. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

    Google Scholar 

  27. C. Chiteme and D.S. McLachlan, Phys. Rev. B, 67, 024206 (2003).

    Google Scholar 

  28. J.H.Hwang, D.S. McLanchlan, and T.O. Mason, Journal of Electroceramics, 3, 7 (1999).

    Google Scholar 

  29. J. Chen and M.P. Harmer, J. Amer. Ceram. Soc., 73, 68 (1990)

    Google Scholar 

  30. K. Huh, J. Kim, and S. Cho, in Proc. of Fulrath Memorial Int'l Symp. on Advanced Cera., edited by N. Ichinose (CNT Inc., Tokyo, 1993), p. 61.

    Google Scholar 

  31. W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zhao, X., Li, F. et al. Evaluation of Mixing Rules for Dielectric Constants of Composite Dielectrics by MC-FEM Calculation on 3D Cubic Lattice. Journal of Electroceramics 11, 227–239 (2003). https://doi.org/10.1023/B:JECR.0000026377.48598.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000026377.48598.4d

Navigation