Skip to main content
Log in

Defect CHEMISTRY and Charge TRANSPORT in SrBi2Nb2O9

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Equilibrium dc conductivity and thermopower measurements at 650–800°C on undoped and 1% acceptor-doped SrBi2Nb2O9, SBN, indicate that the n-type conductivity is similar to that of a simple transition metal oxide that contains 1–2% donor excess. The donor content is attributed to the presence of Bi+3 on Sr+2 sites in the perovskite-like layers of the structure. These centers arise from cation place exchange between these ions in the alternating layers of the crystal. This exchange is apparently not completely self-compensating, and there is local charge compensation in each layer. While the equilibrium conductivity of SrBi2Ta2O9, SBT, is dominated by ionic conduction in the Bi layers, in SBN conduction by electrons in the perovskite-like layers prevails. The difference in behavior is attributed to the expected smaller band gap of the niobate. The electron mobility in SBN is extremely small, of the order of 10−5 cm2/v · sec at 750°C, and is highly activated with an activation energy of about 1.6 eV. The resulting low mobility at ambient temperatures is proposed as the basis for the observed resistance to ferroelectric fatigue. Reports of metallic Bi on the surface of SBT and SBN by XPS analysis are shown to result from the highly reducing atmosphere of the XPS apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature (London), 374, 627 (1995).

    Google Scholar 

  2. W.L. Warren, D. Dimos, B.A. Tuttle, and D.M. Smyth, J. Am. Ceram. Soc., 77, 2753 (1994).

    Google Scholar 

  3. R. Waser, T. Baiatu, and K.-H. Härdtl, J. Am. Ceram. Soc., 73, 1645 (1994).

    Google Scholar 

  4. H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Chuciaro, and L.D. McMillan, J. Appl. Phys., 68, 5783 (1990).

    Google Scholar 

  5. W.L. Warren, B.A. Tuttle, and D. Dimos, Appl. Phys. Lett., 67, 1426 (1995).

    Google Scholar 

  6. A.D. Rae, J.G. Thompson, and R.I. Withers, Acta Crystallogr., Sect. B, 48, 418 (1992).

    Google Scholar 

  7. S.M. Blake, M.J. Falconer, M. McCreedy, and P. Lightfoot, J. Mater. Chem., 7, 1609 (1997).

    Google Scholar 

  8. A.C. Palanduz and D.M. Smyth, J. Euro. Ceram. Soc., 19, 731 (1999).

    Google Scholar 

  9. A.C. Palanduz and D.M. Smyth, J. Electroceram., 5, 21 (2000).

    Google Scholar 

  10. E.C. Subbarao, J. Am. Ceram. Soc., 45, 166 (1962).

    Google Scholar 

  11. M.V. Raymond and D.M. Smyth, Ferroelectrics, 144, 129 (1993).

    Google Scholar 

  12. P.C. Eklund and A.K. Mabatah, Ref. Sci. Instrum, 48, 775 (1977).

    Google Scholar 

  13. A.A.L. Ferreira, J.C.C. Abrantes, J.A. Labrincha, and J.R. Frade, J. Euro. Ceram. Soc., 19, 773 (1999).

    Google Scholar 

  14. Unpublished results of A.C. Palanduz, W. Menesklou, and H.L. Tuller on La-doped SrTiO3.

  15. C. Ohly, S. Hoffmann-Eifert, K. Szot, and R. Waser, J. Euro. Ceram. Soc., 21, 1673 (2001).

    Google Scholar 

  16. C. Ohly, S. Hoffmann-Eifert, K. Szot, and R. Waser, Integrated Ferroelectrics, 38, 229 (2001).

    Google Scholar 

  17. D.M. Smyth, Prog. Solid State Chem., 15, 145 (1984).

    Google Scholar 

  18. R. Moos and K.H. Härdtl, J. Am. Ceram. Soc, 78, 2569 (1995).

    Google Scholar 

  19. A.J. Hartmann, R.N. Lamb, J.F. Scott, and C.D. Gutleben, Integrated Ferroelectrics, 18, 101 (1997).

    Google Scholar 

  20. N.-H. Chan and D.M. Smyth, J. Am. Ceram. Soc., 67, 285 (1984).

    Google Scholar 

  21. S. Ono, A. Sakakibara, T. Seki, T. Osaka, I. Koiwa, J. Mita, T. Iwabuchi, and K. Asami, J. Electrochem. Soc., 144, L185 (1997).

    Google Scholar 

  22. S. Ono, A. Sakakibara, T. Osaka, I. Koiwa, J. Mita, and K. Asami, J. Electrochem. Soc., 146, 685 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanduz, A., Smyth, D. Defect CHEMISTRY and Charge TRANSPORT in SrBi2Nb2O9 . Journal of Electroceramics 11, 191–206 (2003). https://doi.org/10.1023/B:JECR.0000026374.78887.39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000026374.78887.39

Navigation