Skip to main content
Log in

Formation of BaTiO3 from Barium Oxalate and TiO2

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Barium titanate powder has been prepared via a semi-oxalate method that uses barium oxalate and TiO2 precursors, instead of titanyl oxalate. Barium oxalate was precipitated from nitrate solution onto the surface of TiO2 powders. Crystallization of BaTiO3 from the precursors was investigated by TGA, DTA and XRD analysis. It is evident that an intermediate barium oxycarbonate along with BaCO3, forms between 450–500°C and that decomposes to BaCO3 again at high temperature. Decomposition of BaCO3 occurs at much lower temperature, from 600°C onwards, due to the presence of TiO2. The precursor completely transforms into BaTiO3 at 900°C. Nanometer size BaTiO3 crystallites are produced during this synthesis due to the lower calcination temperature. The crystalline morphology of BaTiO3 is controlled mainly by the morphology of BaCO3, which formed in the intermediate stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.K. Templeton and J.A. Pask, J. Am. Cerm. Soc., 42, 212 (1959).

    Google Scholar 

  2. P. Hansen, D. Hennings, and H. Schreinemacher, J. Am. Cerm. Soc., 81(5), 1369 (1998).

    Google Scholar 

  3. D.F.K. Hennings, B.S. Schreinemacher, and H. Schreinemacher, J. Am. Cerm. Soc., 84(12), 2777 (2001).

    Google Scholar 

  4. M. Stockenhuber, H. Mayer, and J.A. Lercher, J. Am. Cerm. Soc., 76(5), 1185 (1993).

    Google Scholar 

  5. M.S.H. Chu and J. Bultitude, in Dielectric Ceramics: Processing, Properties and Applications, edited by K.M. Nair, J.P. Guha, and A. Okamoto (The American Ceramic Society, Westerville, Ohio, 1993), p. 69.

    Google Scholar 

  6. N. Kikuchi and T. Ogasawara, in Dielectric Ceramics: Processing, Properties and Applications, edited by K.M. Nair, J.P. Guha, and A. Okamoto (The American Ceramic Society, Westerville, Ohio, 1993), p. 191.

    Google Scholar 

  7. K. Fukai, K. Hikada, M. Aoki, and K. Abe, Ceram. Int., 16, 285 (1990).

    Google Scholar 

  8. M. Wu, J. Long, G. Wang, A. Huang, and Y. Luo, J. Am. Cerm. Soc., 82(11), 3254 (1999).

    Google Scholar 

  9. M.P. Pechini, U. S. Pat. No. 3 330 697, July 11 (1967).

  10. P.K. Gallagher and J. Thomson, Jr., J. Am. Cerm. Soc., 48(12), 644 (1965).

    Google Scholar 

  11. H.S.G. Murthy, M.S. Rao, and T.R.N. Kutty, J. Inorg. Nucl. Chem., 37, 891 (1975).

    Google Scholar 

  12. Terry A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis (Academic Press, Inc., California, 1996), p. 191.

    Google Scholar 

  13. Kyoung R. Han, Jin-Wook Jang, Seo-Yong Cho, Dae-Yong Jeong, and Kug-sun Hong, J. Am. Cerm. Soc., 81(5), 1209 (1998).

    Google Scholar 

  14. S. Kumar and G.L. Messing, J. Am. Cerm. Soc., 77(11), 2940 (1994).

    Google Scholar 

  15. H.P. Klug and L.E. Alexander, Crystallite Size Determination from Line Broadening (Wiley, New York, 1954), p. 491.

    Google Scholar 

  16. S. Kumar, G.L. Messing, and W.B. White, J. Am. Cerm. Soc., 76(3), 617 (1993).

    Google Scholar 

  17. Jenq-dar Tsay and Tsang-tse Fang, J. Am. Cerm Soc. 82(6), 1409 (1993).

    Google Scholar 

  18. R.H. Perry, D.W. Green, and J.O. Maloney (Eds.), Perry's Chemical Engineers' Handbook, 6th edn. (McGraw-Hill Book Company, New York, 1984), p. 3.

    Google Scholar 

  19. M.I. Zaki and M. Abdel-Khalik, Thermochim. Acta., 78, 29 (1984).

    Google Scholar 

  20. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976), p. 425.

    Google Scholar 

  21. Japes Bera, J. Mater. Sci. Lett., 12, 27 (1993).

    Google Scholar 

  22. A. Bauger, J. Mutin, and J.C. Niepce, J. Mater. Sci., 18, 3543 (1983).

    Google Scholar 

  23. I.D. Kinnon, L.S. Tovey, and F.L. Riley, in Electroceramics: Production, Properties and Microstructures, edited by W.E. Lee and A. Bell (Institute of Materials, London, 1994), p. 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, J., Sarkar, D. Formation of BaTiO3 from Barium Oxalate and TiO2 . Journal of Electroceramics 11, 131–137 (2003). https://doi.org/10.1023/B:JECR.0000026366.17280.0d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000026366.17280.0d

Navigation