Skip to main content

A Biophysical Model of Synaptic Delay Learning and Temporal Pattern Recognition in a Cerebellar Purkinje Cell

Abstract

It has been suggested that information in the brain is encoded in temporal spike patterns which are decoded by a combination of time delays and coincidence detection. Here, we show how a multi-compartmental model of a cerebellar Purkinje cell can learn to recognise temporal parallel fibre activity patterns by adapting latencies of calcium responses after activation of metabotropic glutamate receptors (mGluRs). In each compartment of our model, the mGluR signalling cascade is represented by a set of differential equations that reflect the underlying biochemistry. Phosphorylation of the mGluRs changes the concentration of receptors which are available for activation by glutamate and thereby adjusts the time delay between mGluR stimulation and voltage response. The adaptation of a synaptic delay as opposed to a weight represents a novel non-Hebbian learning mechanism that can also implement the adaptive timing of the classically conditioned eye-blink response.

This is a preview of subscription content, access via your institution.

References

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J. Physiol 289: 425–448.

    PubMed  Google Scholar 

  • Batchelor AM, Garthwaite J (1993)Novel synaptic potentials in cerebellar Purkinje cells: Probable mediation by metabotropic glutamate receptors. Neuropharmacology 32: 11–20.

    Article  PubMed  Google Scholar 

  • Batchelor AM, Garthwaite J (1997) Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385: 74–77.

    Article  PubMed  Google Scholar 

  • Batchelor AM, Madge DJ, Garthwaite J (1994) Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63: 911–915.

    Article  PubMed  Google Scholar 

  • Berridge MJ, Cobbold PH, Cuthbertson KSR (1988) Spatial and temporal aspects of cell signalling. Phil. Trans. R. Soc. Lond. B 320: 325–343.

    Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calciumdependent curves of Ins(l,4,5)-P3 gated and calcium gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754.

    Article  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381–387.

    Article  PubMed  Google Scholar 

  • Bialek W, Rieke F, de Ruyter van Steveninck R, Warland D (1991) Reading a neural code. Science 252: 1854–1857.

    PubMed  Google Scholar 

  • Blackwell KT, Vogl TP, Alkon DL (1998) Pattern matching in a model of dendritic spines. Network 9: 107–121.

    PubMed  Google Scholar 

  • Bloedel JR, Roberts WJ(1971) Action of climbing fibres in cerebellar cortex of the cat. J. Neurophysiol. 34: 17–31.

    PubMed  Google Scholar 

  • Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worely FP (1997) Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386: 284–288.

    Article  PubMed  Google Scholar 

  • BrayD(1995) Protein molecules as computational elements in living cells. Nature 376: 307–312.

    Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  PubMed  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Ann. Rev. Biochem. 56: 395–433.

    Article  PubMed  Google Scholar 

  • Clark RE, Manns JR, Squire LR(2001)Trace and delay eyeblink conditioning: Contrasting phenomena of declarative and nondeclarative memory. Psychol. Sci. 12: 304–308.

    Article  PubMed  Google Scholar 

  • Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21: 401–407.

    Article  PubMed  Google Scholar 

  • De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells:Ahypothesis. Trends Neurosci. 18: 291–295.

    Article  PubMed  Google Scholar 

  • De Schutter E (1997) A new functional role for cerebellar long term depression. Prog. Brain Res. 114: 531–544.

    Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. II. Simulation of synaptic responses. J. Neurophysiol 71: 401–419.

    PubMed  Google Scholar 

  • Eccles JC, Sabah NH, Schmidt RF, Taborikova H (1972a) Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. 2. In Purkyne cells by mossy fiber input. Exp. Brain Res. 15: 261–277.

    Google Scholar 

  • Eccles JC, Sabah NH, Schmidt RF, Taborikova H (1972b) Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. 3. In Purkyne cells by climbing fiber input. Exp. Brain Res. 15: 484–497.

    PubMed  Google Scholar 

  • Eurich CW, Cowan JD, Milton JG (1997) Hebbian delay adaptation in a network of integrate-and-fire neurons. In:W Gerstner, A Germond, M Hasler, JD Nicoud, eds. Proceedings of the 7th International Conference on Artifical Neural Networks ICANN 97, Springer Verlag, Berlin, pp. 157–162.

    Google Scholar 

  • Eurich CW, Ernst U, Pawelzik K (1998) Continous dynamics of neuronal delay adaptation. In: L Niklasson, M Bodén, T Ziemke, eds. Proceedings of the 8th International Conference on Artifical Neural Networks ICANN 98, Springer Verlag, Berlin, pp. 355–360.

    Google Scholar 

  • Fagni L, Bossu JL, Bockaert J (1991) Activation of a Largeconductance Ca2+-DependentK+ Channel by Stimulation of Glutamate Phosphoinositide-coupled Receptors in Cultured Cerebellar Granule Cells. Eur. J. Neurosci. 3: 778–789.

    PubMed  Google Scholar 

  • Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 23: 80–88.

    Article  PubMed  Google Scholar 

  • Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16: 3760–3774.

    PubMed  Google Scholar 

  • Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396: 753–756.

    Article  PubMed  Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394: 19–21.

    Article  PubMed  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen J, Wagner H(1996)Aneuronal learning rule for sub-millisecond temporal coding. Nature 383: 76–78.

    Article  PubMed  Google Scholar 

  • Hamori J, Szentagothai J (1966) Identification under the electron microscope of climbing fibers and their synaptic contacts. Exp. Brain Res. 1: 65–81.

    PubMed  Google Scholar 

  • Hansel C, Linden DJ, D'Angelo E (2001) Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat. Neurosci. 4: 467–475.

    PubMed  Google Scholar 

  • Harata N, Katayama J, Takeshita Y, Murai Y, Akaike N (1996) Two components of metabotropic glutamate responses in acutely dissociated CA3 pyramidal neurons of the rat. Brain Res. 711: 223–233.

    Article  PubMed  Google Scholar 

  • Hartell NA (1994) cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuroreport 5: 833–836.

    PubMed  Google Scholar 

  • Hodgkin AL, Nunn BJ (1987) The effect of ions on sodium-calcium exchange in salamander rods. J. Physiol. 391: 371–398.

    PubMed  Google Scholar 

  • Hoehler FK, Leonard DW(1976) Double responding in classical nictitating membrane conditioning with single-CS dual-ISI training. Pavlov J. Biol. Sci. 11: 180–190.

    PubMed  Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33–36.

    Article  PubMed  Google Scholar 

  • Huang K-P, Huang FL, Mahoney CW, Chen K-H (1991) Protein kinase C subtypes and their respective roles. Prog. Brain Res. 89: 143–155.

    PubMed  Google Scholar 

  • Huning H, Glunder H, Palm G (1998) Synaptic delay learning in pulse-coupled neurons. Neural Comp. 10: 555–565.

    Article  Google Scholar 

  • Ito M (1996) The new hypothesis does not detract from the MAIT theory. Trends Neurosci. 19: 11.

    Article  PubMed  Google Scholar 

  • Ito M, Karachot L (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neuroscience Res. 14: 27–38.

    Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324: 133–134.

    Google Scholar 

  • James GO, Hardiman MJ, Yeo CH (1987) Hippocampal lesions and trace conditioning in the rabbit. Behav. Brain Res. 23: 109–116.

    Article  PubMed  Google Scholar 

  • Karachot L, Kado RT, Ito M (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci. Res. 21: 161–168.

    Article  PubMed  Google Scholar 

  • Kehoe EJ, Graham-Clarke P, Schreurs BG (1989) Temporal patterns of the rabbit's nictitating membrane response to compound and component stimuli under mixed CS-US intervals. Behav. Neurosci. 103: 283–295.

    Article  PubMed  Google Scholar 

  • Khodakhah K, Ogden D (1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc. Natl. Acad. Sci. USA 90: 4976–4980.

    PubMed  Google Scholar 

  • Khodakhah K, Ogden D (1995) Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. J. Physiol. 487: 343–358.

    PubMed  Google Scholar 

  • Kishimoto Y, Kawahara S, Mori H, Mishina M, Kirino Y (2001) Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit epsilon 1. Eur. J. Neurosci. 13: 1221–1227.

    Article  PubMed  Google Scholar 

  • Laurent G (1996) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19: 489–496.

    Article  PubMed  Google Scholar 

  • Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY (1997) Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron 18: 1025–1038.

    Article  PubMed  Google Scholar 

  • Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr. Opin. Neurobiol. 3: 401–406.

    Article  PubMed  Google Scholar 

  • Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267: 14483–14489.

    PubMed  Google Scholar 

  • Marais RM, Nguyen O, Woodgett JR, Parker PJ (1990) Studies of the primary sequence requirements for PKC-α,-β1 and-?peptide substrates. FEBS letters 277: 151–155.

    Article  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765.

    Article  PubMed  Google Scholar 

  • McCormick DA, Thompson RF (1984) Cerebellum: Essential involvement in the classically conditioned eyelid response. Science 223: 296–299.

    PubMed  Google Scholar 

  • McEchron MD, Weible AP, Disterhoft JF (2001) Aging and learningspecific changes in single-neuron activity in CA1 hippocampus during rabbit trace eyeblink conditioning. J. Neurophysiol. 86: 1839–1857.

    PubMed  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. J. Neurosci. 20: 5516–5525.

    PubMed  Google Scholar 

  • Meissner G, Darling E, Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+ and adenine nucleotides. Biochemistry 25: 236–244.

    PubMed  Google Scholar 

  • Mignery GA, Johnston PA, Sudhof TC (1992) Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J. Biol. Chem. 267: 7450–7455.

    PubMed  Google Scholar 

  • Moyer JRJ, Deyo RA, Disterhoft JF (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosc. 104: 243–252.

    Article  Google Scholar 

  • Murphy JT, Sabah NH (1970) Spontaneous firing of cerebellar Purkinje cells in decerebrate and barbiturate anesthesized cats. Brain Res. 17: 515–519.

    Article  PubMed  Google Scholar 

  • Napp-Zinn H, Jansen M, Eckmiller R (1996) Recognition and tracking of impulse patterns with delay adaptation in biology-inspired pulse processing neural net (BPN) hardware. Biol. Cybernetics 74: 449–453.

    Google Scholar 

  • Natschlager T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons. Network 9: 319–332.

    PubMed  Google Scholar 

  • Netzeband JG, Parsons KL, Sweeney DD, Gruol DL (1997) Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. J. Neurophysiol. 78: 63–75.

    PubMed  Google Scholar 

  • Nishizuka Y, Shearman MS, Oda T, Berry N, Tanaka C(1991) Protein kinase C family and nervous function. Prog. Brain Res. 89: 125–141.

    PubMed  Google Scholar 

  • Ohyama T, Mauk MD (2001) Latent acquisition of timed responses in cerebellar cortex. J. Neurosci. 21: 682–690.

    PubMed  Google Scholar 

  • Rainnie DG, Holmes KH, Shinnick-Gallagher P (1994) Activation of postsynaptic metabotropic glutamate receptors by trans-ACPD hyperpolarizes neurons of the basolateral amygdala. J. Neurosci. 14: 7208–7220.

    PubMed  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ross RT, Scavio MJJ (1983) Perseveration of associative strength in rabbit nictitating membrane conditioning following ISI shifts. Anim. Learn. Behav. 11: 435–438.

    Google Scholar 

  • Schreurs BG, Alkon DL (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res. 631: 235–240.

    Article  PubMed  Google Scholar 

  • Schweighofer N, Ferriol G (2000) Diffusion of nitric oxide can facilitate cerebellar learning: A simulation study. Proc. Natl. Acad. Sci. USA 97: 10661–10665.

    Article  PubMed  Google Scholar 

  • Sejnowski TJ (1995) Time for a newneural code? Nature 376: 21–22.

    Article  PubMed  Google Scholar 

  • Shibuki K, Okada D(1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349: 326–328.

    Article  PubMed  Google Scholar 

  • Solomon PR, Vander Schaaf ER, Thompson RF, Weisz DJ (1986) Hippocampus and trace conditioning of the rabbit's classically conditioned eye-blink response. Behav. Neurosci. 100: 729–744.

    Article  PubMed  Google Scholar 

  • Steinmetz JE (1990) Classical nictitating membrane conditioning in rabbits with varying interstimulus intervals and direct activation of cerebellar mossy fibres as the CS. Behav. Brain Res. 38: 97–108.

    Article  PubMed  Google Scholar 

  • Stemmer PM, Klee CB (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33: 6859–6866.

    PubMed  Google Scholar 

  • Steuber V, Willshaw DJ (1997) How a single Purkinje cell could learn the adaptive timing of the classically conditioned eye-blink response. In: W Gerstner, A Germond, M Hasler, JD Nicoud, eds. Proceedings of the 7th International Conference on Artifical Neural Networks ICANN 97, Springer Verlag, Berlin, pp. 115–120.

    Google Scholar 

  • Steuber V, Willshaw DJ (1999) Adaptive leaky integrator models of cerebellar Purkinje cells can learn the clustering of temporal patterns. Neurocomputing 26: 271–276.

    Article  Google Scholar 

  • Takatsuki K, Kawahara S, Takehara K, Kishimoto Y, Kirino Y(2001) Effects of the noncompetitiveNMDAreceptor antagonist MK-801 on classical eyeblink conditioning in mice. Neuropharmacology 41: 618–628.

    Article  PubMed  Google Scholar 

  • Tempia F, Miniaci MC, Anchisi D, Strata P (1998) Postsynaptic currents mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J. Neurophysiol. 80: 520–528.

    PubMed  Google Scholar 

  • Thompson RF, Kim JJ (1996) Memory systems in the brain and localization of a memory. Proc. Natl. Acad. Sci. USA 93: 13438–13444.

    Article  PubMed  Google Scholar 

  • Thompson RF, Krupa DJ (1994) Organization of memory traces in the mammalian brain. Ann. Rev. Neurosci. 17: 519–549.

    Article  PubMed  Google Scholar 

  • Thorpe S, Fize F, Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520–522.

    Article  PubMed  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21: 717–726.

    Article  PubMed  Google Scholar 

  • Vincent SR, Kimura H(1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46: 755–784.

    Article  PubMed  Google Scholar 

  • Wang SS, Denk W, Hausser M(2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3: 1266–1273.

    Article  PubMed  Google Scholar 

  • Wehr M, Laurent G (1996) Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384: 162–166.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak DS, Lavond DG, Thompson RF (1985) Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348: 249–260.

    Article  PubMed  Google Scholar 

  • Yeo CH, Hesslow G (1998) Cerebellum and conditioned reflexes. Trends Cognitive Sci. 2: 322–330.

    Article  Google Scholar 

  • Yeo CH, Lobo DH, Baum A (1997) Acquisition of a new-latency conditioned nictitating membrane response-Major, but not complete, dependence on the ipsilateral cerebellum. Learn. Mem. 3: 557–577.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steuber, V., Willshaw, D. A Biophysical Model of Synaptic Delay Learning and Temporal Pattern Recognition in a Cerebellar Purkinje Cell. J Comput Neurosci 17, 149–164 (2004). https://doi.org/10.1023/B:JCNS.0000037678.26155.b5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000037678.26155.b5

  • cerebellum
  • calcium
  • mGluR
  • temporal coding