Skip to main content
Log in

Optimal Stimulus Coding by Neural Populations Using Rate Codes

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We create a framework based on Fisher information for determining the most effective population coding scheme for representing a continuous-valued stimulus attribute over its entire range. Using this scheme, we derive optimal single- and multi-neuron rate codes for homogeneous populations using several statistical models frequently used to describe neural data. We show that each neuron's discharge rate should increase quadratically with the stimulus and that statistically independent neural outputs provides optimal coding. Only cooperative populations can achieve this condition in an informationally effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott L, Dayan P (1999) The effect of correlated variability on the accuracy of a population code. Neural Comput. 11: 91-101.

    Google Scholar 

  • Bethge M, Rotermund D, Pawelzik K (2002) Optimal short-term population coding: When Fisher information fails. Neural Comput. 14: 2317-2351.

    Google Scholar 

  • Cramér H (1946) Mathematical Methods of Statistics. Princeton University Press.

  • Dan Y, Alonso J-M, Usrey W, Reid R (1998) Coding of visual information by the precisely correlated spikes in the lateral geniculate nucleus. Nature Neurosci. 1: 501-507.

    Google Scholar 

  • deCharms R, Merzenich M (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381: 610-613.

    Google Scholar 

  • Gawne T, Richmond B (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons? Neuroscience 13: 2758-2771.

    Google Scholar 

  • Gerstein G, Bedenbaugh P, Aertsen A (1989) Neuronal assemblies. IEEE Trans. Biomed. Engineering 36: 4-14.

    Google Scholar 

  • Holgate P (1964) Estimation for the bivariate Poisson distribution. Biometrika 51: 241-245.

    Google Scholar 

  • Jenison R (2000) Correlated cortical populations can enhance sound localization performance. J. Acoust. Soc. Am. 107: 414-421.

    Google Scholar 

  • Johnson D (1996) Point process models of single-neuron discharges. J. Comp. Neuroscience 3: 275-299.

    Google Scholar 

  • Johnson D (2004) Neural population structures and consequences for neural coding. J. Comp. Neurosci. 16: 69-80.

    Google Scholar 

  • Johnson D, Gruner C, Baggerly K, Seshagiri C (2001) Information-theoretic analysis of neural coding. J. Comp. Neurosci. 10: 47-69.

    Google Scholar 

  • Johnson D, Kiang N (1976) Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophysical J. 16: 719-734.

    Google Scholar 

  • Lehmann E, Casella G (1998) Theory of Point Estimation, 2nd edn. Springer-Verlag, New York.

    Google Scholar 

  • Miller K, Troyer T (2002) Neural noise can explain expansive, power-law nonlinearities in neural response functions. J. Neurophysiol. 87: 653-659.

    Google Scholar 

  • Nirenberg S, Carcieri S, Jacobs A, Latham P (2001) Retinal ganglion cells act largely as independent encoders. Nature 411: 698-701.

    Google Scholar 

  • Panzeri S, Schultz S, Treves A, Rolls E (1999) Correlations and the encoding of information in the nervous system. Proc. Royal Soc. Lond. 266: 1001-1012.

    Google Scholar 

  • Perkel D, Bullock G (1968) Neuronal coding. Neurosci. Res. Prog. Bull. 6: 221-348.

    Google Scholar 

  • Pola G, Thiele A, Hoffmann K-P, Panzeri S (2003) An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network: Computation in Neural Systems 14: 35-60.

    Google Scholar 

  • Reich D, Mechler F, Victor J (2001) Independent and redundant information in nearby cortical neurons. Science 294: 2566-2568.

    Google Scholar 

  • Seung H, Sompolinsky H (1993) Simple models for reading neuronal population codes. Proc. Natl. Acad. 90: 10749-10753.

    Google Scholar 

  • Shamir M, Sompolinsky H (2001) Correlation codes in neuronal populations. In: Dietterich T, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, pp. 277-284.

    Google Scholar 

  • Sinanovi? S, Johnson D (2003) Toward a theory of information processing. In preparation.

  • Sompolinksy H, Yoon H, Kang K, Shamir M (2001) Population coding in neuronal systems with correlated noise. Phys. Rev. E. 64: 051904.

    Google Scholar 

  • Stein R (1967) The information capacity of nerve cells using a frequency code. Biophysical J. 7: 67-82.

    Google Scholar 

  • Wilke S, Eurich C (2002) Representational accuracy of stochastic neural populations. Neural Comput. 14: 155-189.

    Google Scholar 

  • Wu S, Amari S, Nakahara H (2002) Population coding and decoding in a neural field: A computational study. Neural Computation 14: 999-1026.

    Google Scholar 

  • Zohary E, Shadlen M, Newsome W (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.H., Ray, W. Optimal Stimulus Coding by Neural Populations Using Rate Codes. J Comput Neurosci 16, 129–138 (2004). https://doi.org/10.1023/B:JCNS.0000014106.09948.83

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000014106.09948.83

Navigation