Skip to main content
Log in

Comparison Between Non-Equilibrium Green's Function and Monte Carlo Simulations for Transport in a Silicon Quantum Wire Structure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present comparisons of simulations conducted with non-equilibrium Green's functions and Monte Carlo approaches. As prototype, we consider an idealized silicon quantum wire structure, consisting of a conduction channel of rectangular cross-section, terminated by two contacts. The Monte Carlo model treats the particles as semi-classical, but distributed over up to seven subbands and with scattering model similar to the one used for the Green's functions model. Results for drift velocity under various field conditions agree very closely using the two techniques, suggesting that particle simulation may continue to be a useful physical investigation tool at the nanoscale with an appropriate introduction of the most important quantum features of the transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Klimeck, F. Oyafuso, T.B. Boykin, R.C. Bowen, and P. von Allmen, Computer Mod. Eng. Sci., 3(5), 601 (2002).

    Google Scholar 

  2. M. Sabathil, S. Hackenbuchner, J.A. Majewski, G. Zandler, and P. Vogl, J. Comp. Electronics, 1(1/2), 81 (2002).

    Google Scholar 

  3. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Wien, 1984).

    Google Scholar 

  4. K. Blotekjaer, IEEE Trans. Electron Dev., 17(9), 38 (1970).

    Google Scholar 

  5. K. Yokoyama and K. Hess, Phys. Rev. B, 33(8), 5595 (1986).

    Google Scholar 

  6. U. Ravaioli and D.K. Ferry, IEEE Trans. Electron Dev., 33(5), 677 (1986).

    Google Scholar 

  7. M. Fischetti and S. Laux, Phys. Rev. B, 48(4), 2244 (1993).

    Google Scholar 

  8. S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, J. Appl. Phys., 79(2), 911 (1996).

    Google Scholar 

  9. D. Jovanovic, S. Briggs, and J.P. Leburton, Phys. Rev. B, 42(17), 11108 (1990).

    Google Scholar 

  10. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  11. D.K. Ferry, Superlattices and Microstructures, 28(5/6), 419 (2000).

    Google Scholar 

  12. H. Tsuchiya and U. Ravaioli, J. Appl. Phys., 89(7), 4023 (2001).

    Google Scholar 

  13. B. Winstead and U. Ravaioli, IEEE Trans. Electron Dev., 50(2), 440 (2003).

    Google Scholar 

  14. F. Sols, M. Macucci, U. Ravaioli, and K. Hess, J. Appl. Phys., 66(8), 3892 (1988).

    Google Scholar 

  15. R. Landauer, IBM J. Res. Dev., 1(3), 251 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, D., Godoy, A., Ravaioli, U. et al. Comparison Between Non-Equilibrium Green's Function and Monte Carlo Simulations for Transport in a Silicon Quantum Wire Structure. Journal of Computational Electronics 2, 335–339 (2003). https://doi.org/10.1023/B:JCEL.0000011448.05449.a1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011448.05449.a1

Navigation