Skip to main content
Log in

Microscopic Description of Nanostructures Grown on (N11) Surfaces

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We report on a theoretical study of GaAs/InGaAs based nanostructures grown along the [N11] direction. The elastic deformations of the structures were calculated by means of the continuum elasticity theory, taking into account commensurability constraints at the interfaces. The strained atomic positions were derived, as well as the strain induced piezoelectric polarizations and electric fields. These data were used as an input for the calculation of the fundamental electronic transitions of our systems within the empirical tight-binding approach. These results are compared with the envelope function methods. We applied our approach to a (211) oriented InAs quantum dot embedded in a GaAs matrix, and to a (311) oriented InGaAs quantum wire, embedded in AlGaAs barriers. In both cases, we obtained a non-symmetric elastic deformation due to the lower symmetry of (N11)-oriented structures. Moreover, the atomic displacements and the strain induced piezoelectric potential induce a separation of the hole and electron wave functions, which are shifted from the dot center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.I. Alferov, Rev. Mod. Phys., 73, 767 (2001).

    Google Scholar 

  2. R. Nöotzel, M. Ramsteiner, Z. Niu, H.-P. Schöonherr, L. Däaweritz, and K.H. Ploog, Appl. Phys. Lett, 70, 1578 (1997).

    Google Scholar 

  3. S. Sanguinetti, M. Gurioli, E. Grilli, M. Guzzi, and M. Henini, Appl. Phys. Lett, 77, 2979 (2000).

    Google Scholar 

  4. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B, 59, 5688 (1998).

    Google Scholar 

  5. A. Di Carlo, Semicond. Sci. Technol., 18, R1 (2003).

    Google Scholar 

  6. C. Pryor, M.-E. Pistol, and L. Samuelson, Phys. Rev.B, 56, 10404 (1997).

    Google Scholar 

  7. B. Jogai, J. Appl. Phys., 88, 5050 (2000).

    Google Scholar 

  8. L. De Caro and L. Tapfer, Phys. Rev. B, 48, 2298 (1993).

    Google Scholar 

  9. nextnano 3 device simulation package, see web site http://www.nextnano.de.

  10. E. Anastassakis and M. Cardona, Phys. Stat. Sol. (b), 104, 589 (1981).

    Google Scholar 

  11. J.C. Slater and G.F. Koster, Phys. Rev., 94, 1498 (1954).

    Google Scholar 

  12. J.M. Jancu, R. Scholtz, F. Beltram, and F. Bassani, Phys. Rev. B, 57, 6493 (1998).

    Google Scholar 

  13. I. Vurgaftman, J.R.Meyer, and L.R. Ram-Mohan, J. Appl. Phys., 89, 5815 (2001).

    Google Scholar 

  14. S.H. Wei and A. Zunger, Appl. Phys. Lett., 72, 2011 (2001).

    Google Scholar 

  15. C.Y.-P. Chao and S.L. Chuang, Phys. Rev. B., 46, 4110 (1992).

    Google Scholar 

  16. D. Alderighi, M. Zamfirescu, M. Gurioli, A. Vinattieri, M. Colocci, S. Sanguinetti, A. Di Carlo, M. Povolotskyi, and R. Nöotzel, Phys. Stat. Sol. (c), 0, 1433 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povolotskyi, M., Gleize, J., Di Carlo, A. et al. Microscopic Description of Nanostructures Grown on (N11) Surfaces. Journal of Computational Electronics 2, 275–279 (2003). https://doi.org/10.1023/B:JCEL.0000011437.52664.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011437.52664.b7

Navigation