Skip to main content
Log in

Ion Channels as Devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Ion channels are proteins with a hole down their middle that control an enormous range of biological function. Channels are devices in the engineering sense of the word and engineering analysis helps understand their function. In particular, the current through channels is driven by the power supply of concentration gradient and electrical potential maintained by across membranes by cell metabolism. The current is controlled by the physics of ion permeation in a narrow charged tube. The wall of the tube contains a few fixed charges; the tube is less than 1 nm in diameter. The density of charge (mobile or fixed) in the tube is enormous, ∼10 molar. (Liquid water is ∼55 molar.) Movement of ions through this tube can be well described as the movement of charged spheres according to the Poisson-Drift-Diffusion equations of computational electronics. Selfconsistent computation of the electric field is a necessity. The chemical specificity of channels seems to arise from the crowding of charge in their narrow tunnel. A purely physical description of the energetics of crowded spheres is enough to explain the complex patterns of selectivity found in several types of channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts et al., Essential Cell Biology, 3rd edn. (New York: Garland, 1998), p. 630.

    Google Scholar 

  2. F.M. Ashcroft, Ion Channels and Disease (NewYork: Academic Press, 1999), p. 481.

    Google Scholar 

  3. B. Hille, Ionic Channels of Excitable Membranes, 3rd ed. (Sunderland: Sinauer Associates Inc., 2001), p. 1.

    Google Scholar 

  4. P. Lague, M.J. Zuckermann, and B. Roux, Biophys J, 81(1), 276 (2001).

    Google Scholar 

  5. P. Lague, M.J. Zuckermann, and B. Roux, Biophys J, 79(6), 2867 (2000).

    Google Scholar 

  6. R. MacKinnon, Nature, 416(6878), 261 (2002).

    Google Scholar 

  7. Y. Jiang et al., Nature, 423(6935), 42 (2003).

    Google Scholar 

  8. Y. Jiang et al., Nature, 423(6935), 33 (2003).

    Google Scholar 

  9. V. Ruta et al., Nature, 422(6928), 180 (2003).

    Google Scholar 

  10. R. Dutzler et al., Nature, 415(6869), 287 (2002).

    Google Scholar 

  11. D.A. Doyle et al., Science, 280, 69 (1998).

    Google Scholar 

  12. S.-H. Chung et al., Biophysical Journal, 75, 793 (1998).

    Google Scholar 

  13. M.G. Kurnikova et al., Biophysical Journal, 76, 642 (1999).

    Google Scholar 

  14. B. Corry, S. Kuyucak, and S.-H. Chung, Journal of General Physiology, 114(597-599) (1999).

  15. S.H. Chung, T.W. Allen, and S. Kuyucak, Biophys J, 82(2), 628 (2002).

    Google Scholar 

  16. S. Chung and S. Kuyucak, Clin Exp Pharmacol Physiol., 28, 89 (2001).

    Google Scholar 

  17. P. Graf et al. Journal of Physical Chemistry B, 104, 12324 (2000).

    Google Scholar 

  18. W. Im and B. Roux, J Mol Biol, 322(4), 851 (2002).

    Google Scholar 

  19. W. Im and B. Roux, J Mol Biol, 319(5), 1177 (2002).

    Google Scholar 

  20. U. Hollerbach, et al. Langmuir, 16, 5509 (2000).

    Google Scholar 

  21. U. Hollerbach, D.-P. Chen, and R.S. Eisenberg, Journal of Computational Science, 16(4), 373 (2001).

    Google Scholar 

  22. D. Levitt, Biophysical Journal, 59, 271 (1991).

    Google Scholar 

  23. D. Levitt, Biophysical Journal, 59, 278 (1991).

    Google Scholar 

  24. D.P. Chen, V. Barcilon, and R.S. Eisenberg, Biophys J, 61, 1372 (1992).

    Google Scholar 

  25. V. Barcilon, D.P. Chen, and R.S. Eisenberg, SIAM J. Applied Math, 52, 1405 (1992).

    Google Scholar 

  26. R.S. Eisenberg, J. Membrane Biol., 150, 1 (1996).

    Google Scholar 

  27. J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects (New York: Springer, 1998).

    Google Scholar 

  28. S. Durand-Vidal, J.-P. Simonin, and P. Turq, Electrolytes at Interfaces (Boston: Kluwer, 2000).

    Google Scholar 

  29. J.-P. Simonin and L. Blum. J Chem Soc, Faraday Transactions, 92, 1533 (1996).

    Google Scholar 

  30. J.-P. Simonin, O. Bernard, and L. Blum, Journal of Physical Chemistry B, 102, 4411 (1998).

    Google Scholar 

  31. J.-P. Simonin, O. Bernard, and L. Blum, Journal of Physical Chemistry B, 103, 699 (1999).

    Google Scholar 

  32. E. Waisman and J.L. Lebowitz, Journal of Chemical Physics, 56, 3093 (1972).

    Google Scholar 

  33. W. Nonner, L. Catacuzzeno, and B. Eisenberg, Biophysical Journal, 79, 1976 (2000).

    Google Scholar 

  34. D. Gillespie et al., Physical Chemistry Chemical Physics, 4, 4763 (2002).

    Google Scholar 

  35. D. Boda et al., Physical Chemistry Chemical Physics (PCCP), 4, 5154 (2002).

    Google Scholar 

  36. T.A. van der Straaten, et al., J. Computational Electronics, 1, 335 (2002).

    Google Scholar 

  37. W. Nonner, L. Catacuzzeno, and B. Eisenberg, Biophysical Journal, 78, A96 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberg, B. Ion Channels as Devices. Journal of Computational Electronics 2, 245–249 (2003). https://doi.org/10.1023/B:JCEL.0000011432.03832.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011432.03832.22

Navigation