Skip to main content
Log in

Microscopic Modelling of Opto-Electronic Quantum Devices: A Predictive Simulation Tool

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A microscopic analysis of non-equilibrium phenomena in unipolar quantum devices is presented. In particular, a global Monte Carlo simulation scheme (semiclassical as well as quantum) is employed, which allows us to directly access details of the three-dimensional carrier dynamics, without resorting to phenomenological parameters. Applications to state-of-the-art mid-infrared quantum-cascade lasers and novel far-infrared emitters are discussed. The extremely good agreement between theoretical results and experimental findings demonstrates that our approach is a valid and predictive tool for the understanding of charge transport in these quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, and A.Y. Cho, Science, 264, 553 (1994).

    Google Scholar 

  2. R.C. Iotti and F. Rossi, Appl. Phys. Lett., 78, 2902 (2001).

    Google Scholar 

  3. R.C. Iotti and F. Rossi, Phys. Rev. Lett., 87, 146603 (2001).

    Google Scholar 

  4. T. Kuhn, in Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll(Chapmann & Hall, London, 1998), p. 173.

    Google Scholar 

  5. For carrier-carrier interaction, we employ the well-established static screening model commonly used in MC simulations of ultrafast carrier relaxation in 2D systems S.M. Goodnick and P. Lugli, Phys. Rev., B 37, 2578 (1988)].

    Google Scholar 

  6. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, Appl. Phys. Lett., 73, 3486 (1998).

    Google Scholar 

  7. F. Eickemeyer, K. Reimann, M. Woerner, T. Elsaesser, S. Barbieri, C. Sirtori, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, Phys. Rev. Lett., 89, 47402 (2002).

    Google Scholar 

  8. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A. Giles Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, Nature, 417, 156 (2002).

    Google Scholar 

  9. R. K¨ohler, R.C. Iotti, A. Tredicucci, and F. Rossi, Appl. Phys. Lett., 79, 3920 (2001).

    Google Scholar 

  10. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A. Giles Davies, and D.A. Ritchie, Appl. Phys. Lett., 80, 1867 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iotti, R.C., Rossi, F. Microscopic Modelling of Opto-Electronic Quantum Devices: A Predictive Simulation Tool. Journal of Computational Electronics 2, 191–195 (2003). https://doi.org/10.1023/B:JCEL.0000011423.43254.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011423.43254.57

Navigation