Advertisement

Journal of Computer-Aided Molecular Design

, Volume 17, Issue 12, pp 825–836 | Cite as

A molecular modeling study of inhibitors of nuclear factor kappa-B (p50) – DNA binding

  • Vineet Pande
  • Rakesh K. Sharma
  • Jun-Ichiro Inoue
  • Masami Otsuka
  • Maria J. Ramos
Article

Abstract

Nuclear Factor-kappa B (NF-κB) is an inducible transcription factor of the Rel family, and is sequestered in the cytoplasm by the IκB family of proteins. NF-κB can exist in several dimeric forms, but the p50/p65 heterodimer is the predominant one. Activation of NF-κB by a range of stimuli including viral products, and oxidative stress, leads to phosphorylation and proteasome dependent degradation of IκB, leading to the release of free NF-κB. This free NF-κB then binds to its target sites (κB sites in the DNA) to initiate transcription. These κB sites are also present in the Long Terminal Repeat (LTR) of HIV-1, and hence NF-κB (p50 subunit) binding to LTR–DNA is critical in viral replication. Targeting direct p50-DNA binding, in this regard, is a novel approach to design anti-HIV gene expression inhibitors, which do not have the problem of resistance unlike in other anti-HIV strategies. The present study is a part of our search for leads for the specific inhibition of p50-DNA binding. We have been experimentally studying different types of these inhibitors, and in this work, we attempted to get a common definition of their structural mechanism onto p50-DNA binding. Using three different classes of inhibitors, we modelled their association with the DNA-Binding Region (DBR) of the p50 subunit of NF-κB. Docking studies were carried out using a genetic algorithm based program (GOLD). Further, to compare electrostatic complementarity in the association of the inhibitors with the DBR, Molecular Electrostatic Potentials (MEPs) were generated for the DBR and each inhibitor. The results of docking revealed a strong network of hydrogen bonding interactions for every active inhibitor, and the contrary for the less active ones. Further, the MEPs revealed that the DBR of p50 represents a surface of electropositive potential, and the active inhibitors represent a complementary electronegative surface. With the present modelling study we conclude that the principal properties to be possessed by the new leads against p50-DNA binding should be that of having the ability to make a strong network of hydrogen bonds with the DBR of p50, and preferably, having electronegative potentials in their peripheral surface.

DNA binding region docking HIV-1 hydrogen bonding interactions molecular electrostatic potential nuclear factor–kappa B p50 subunit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghosh, S., May, M.J. and Kopp, E.B., Annu. Rev. Immunol., 16 (1998) 225.CrossRefPubMedGoogle Scholar
  2. 2.
    Baldwin, A.S., Jr., Annu. Rev. Immunol., 14 (1996) 649.CrossRefPubMedGoogle Scholar
  3. 3.
    Israel, A., Trends Cell. Biol., 10 (2000) 129.CrossRefPubMedGoogle Scholar
  4. 4.
    Siebenlist, U., Franzoso, G. and Brown, K., Annu. Rev. Cell Biol., 10 (1994) 405.CrossRefPubMedGoogle Scholar
  5. 5.
    Baeurle, P.A. and Henkel, T., Annu. Rev. Immunol., 12 (1994) 141.PubMedGoogle Scholar
  6. 6.
    Anderson, K.V., Curr. Opin. Immunol., 12 (2000) 13.CrossRefPubMedGoogle Scholar
  7. 7.
    Sen, R. and Baltimore, D., Cell, 46 (1986) 705.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, G. and Ghosh, S., J. Clin. Invest., 107 (2001) 13.PubMedGoogle Scholar
  9. 9.
    Liou, H.C. and Baltimore, D., Curr. Opin. Cell Biol., 5 (1993) 477.CrossRefPubMedGoogle Scholar
  10. 10.
    Grilli, M., Jason, J.S. and Leonardo, M., Cytology, 143 (1993) 1.Google Scholar
  11. 11.
    Chen, F., Castranova, V., Shi, X. and Demers, L.M., Clin. Chem., 45 (1999) 7.PubMedGoogle Scholar
  12. 12.
    Finco, T. and Baldwin, G., Immunity, 3 (1995) 263.CrossRefPubMedGoogle Scholar
  13. 13.
    Verma, I.M., Stevenson, J.K., Schwaz, E.M., Van Antwerp, D. and Miyamoto, S., Genes Dev., 9 (1995) 2723.PubMedGoogle Scholar
  14. 14.
    Wulczyn, F.G., Krapmann, D. and Scheidereit, C., J. Mol. Med., 74 (1996) 749.CrossRefPubMedGoogle Scholar
  15. 15.
    Baeurle, P.A. and Baltimore, D., Cell, 87 (1996) 13.CrossRefPubMedGoogle Scholar
  16. 16.
    Miyamoto, S. and Verma, I.M., Adv. Cancer Res., 66 (1995) 255.PubMedGoogle Scholar
  17. 17.
    Lander, H.M., Ogiste, J.S., Pearce, S.F., Levi, R. and Novogrodsky, A., J. Biol. Chem., 270 (1995) 7071.CrossRefGoogle Scholar
  18. 18.
    Scheinmann, R.I., Cogswell, P.G., Lofquist, A.K. and Baldwin, A.S., Science, 270 (1995) 283.PubMedGoogle Scholar
  19. 19.
    Frantz, B., Nordby, E., Bren, G., Stefan, N., Pava, C., Kinkaid, R. and O'Neill, E., EMBO J., 13 (1994) 861.PubMedGoogle Scholar
  20. 20.
    Davis, N., Ghosh, S., Simmons, D.L., Tempst, P., Liou, H.C., Baltimore, D. and Bose, H.R., Science, 253 (1991) 1268.PubMedGoogle Scholar
  21. 21.
    Kopp, E.B. and Ghosh, S., Adv. Immunol., 58 (1995) 1.PubMedGoogle Scholar
  22. 22.
    Collins, T., Read, M.A., Neish, A.S., Whitley, M.J., Thanos, D. and Maniatis, T., FASEB J., 9 (1995) 899.PubMedGoogle Scholar
  23. 23.
    Sperisen, P., Wang, S.M., Soldaim, E., Pla, M., Rusterholz, C., Bucher, P., Corthesy, P., Reichenbach, P. and Naboholz, M., J. Biol. Chem., 270 (1995) 10743.CrossRefPubMedGoogle Scholar
  24. 24.
    Sha, W.C., Liou, H.C., Tuomanen, E.I. and Baltimore, D., Cell, 80 (1995) 321.CrossRefPubMedGoogle Scholar
  25. 25.
    Beg, A.A., Sha, W.C., Bronson, R.T., Ghosh, S. and Baltimore, D., 376 (1995) 167.Google Scholar
  26. 26.
    Weih, F., Carrasco, D., Durham, S.K., Barton, D.S., Rozzo, C.A., Ryseck, R.P., Lira, S.A. and Bravo, R., Cell, 80 (1995) 331.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheidereit, C., Krapmann, D. and Wulczyn, F.G., In Clements, M. (Ed.), Protein Phosphorylation and Cell Growth Regulation, Harwood Academic Publishers, Amsterdam, 1996, pp. 163–196.Google Scholar
  28. 28.
    Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. and Siebenlist, U., Science, 267 (1995) 1485.PubMedGoogle Scholar
  29. 29.
    Rodriguez, M.S., Michalopoulus, I., Arenzana-Seisdedos, F. and Hay, R.T., Mol. Cell Biol., 15 (1995) 2413.PubMedGoogle Scholar
  30. 30.
    Alkalay, I., Yaron, A., Hatzubai, A., Orian, A., Ciechanover, A. and Ben-Neriah, Y., Proc. Natl. Acad. Sci. USA, 92 (1995) 10599.PubMedGoogle Scholar
  31. 31.
    Scherer, D.C., Brockman, J.A., Chen, Z., Maniatis, T. and Ballard, D.W., Proc. Natl. Acad. Sci. USA, 92 (1995) 11259.PubMedGoogle Scholar
  32. 32.
    Barroga, C.F., Stevenson, J.K., Schwarz, E.M. and Verma, I.M., Proc. Natl. Acad. Sci. USA, 92 (1995) 7637.PubMedGoogle Scholar
  33. 33.
    Elliott, P.J., Am. J. Clin. Pathol., 116 (2001) 637.CrossRefPubMedGoogle Scholar
  34. 34.
    Phelps, C.B., Sengchanthalangsy, L.L., Malek, S. and Ghosh, G., J. Biol. Chem., 275 (2000) 24392.CrossRefPubMedGoogle Scholar
  35. 35.
    Berkowitz, B., Huang, D.-B., Chen-Park, F.E., Sigler, P.B. and Ghosh, G., J. Biol. Chem., 277 (2002) 24694.CrossRefPubMedGoogle Scholar
  36. 36.
    Aradhya, S. and Nelson, D.L., Curr. Opin. Gen. Dev., 11 (2001) 300.CrossRefGoogle Scholar
  37. 37.
    Yamamoto, Y. and Gaynor, R.B., Curr. Mol. Med., 1 (2001) 287.CrossRefPubMedGoogle Scholar
  38. 38.
    Lenardo, M.J. and Baltimore, D., Cell, 58 (1989) 227.CrossRefPubMedGoogle Scholar
  39. 39.
    Nabel, G. and Baltimore, D., Nature, 326 (1987) 711.CrossRefPubMedGoogle Scholar
  40. 40.
    Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R.C. and Wong-Stall, F., Nature, 345 (1990) 84.Google Scholar
  41. 41.
    De Clercq, E., J. Med. Chem., 38 (1995) 2491.CrossRefPubMedGoogle Scholar
  42. 42.
    Cohen, J., Science, 277 (1997) 32.CrossRefPubMedGoogle Scholar
  43. 43.
    Coffin, J.M., Science, 267 (1995) 483.PubMedGoogle Scholar
  44. 44.
    Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M. and Ho, D.D., Nature, 387 (1997) 188.CrossRefPubMedGoogle Scholar
  45. 45.
    Pande, V. and Ramos, M.J., Curr. Med. Chem., 10 (2003) 1603.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen-Park, F.E., Huang, D.-B., Noro, B., Thanos, D. and Ghosh, G., J. Biol. Chem., 277 (2002) 24701.CrossRefPubMedGoogle Scholar
  47. 47.
    Hiscott, J., Kwon, H. and Génin, P., J. Clin. Invest., 107 (2001) 143.PubMedGoogle Scholar
  48. 48.
    Dickinson, L.A., Trauger, J.W., Baird, E.E., Dervan, P.B., Graves, B.J. and Gottesfeld, J.M., J. Biol. Chem., 274 (1999) 12765.CrossRefPubMedGoogle Scholar
  49. 49.
    Chen-Park, F.E., Huang, D.-B., Chen, Y.Q. and Ghosh, G., Nature, 391 (1998) 410.CrossRefPubMedGoogle Scholar
  50. 50.
    Muller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L. and Harrison, S.C., Nature, 373 (1995) 311.CrossRefPubMedGoogle Scholar
  51. 51.
    Prasad, A.S., Bao, B., Beck, F.W.J. and Sarkar, F.H.J., J. Lab. Clin. Med., 138 (2001) 250.CrossRefPubMedGoogle Scholar
  52. 52.
    Sharma, R.K., Chem. Br., 30 (1994) 90.Google Scholar
  53. 53.
    Seki, S., Tsutsui, K. and Oda, T., Biochem. Biophys. Res. Commun., 79 (1977) 179.CrossRefPubMedGoogle Scholar
  54. 54.
    Nakane, H., Balzarini, J., DeClercq, E. and Ono, K., Eur. J. Biochem., 177 (1988) 91.CrossRefPubMedGoogle Scholar
  55. 55.
    Zaug, A.J. and Cech, T.R., Cell, 19 (1980) 331.CrossRefPubMedGoogle Scholar
  56. 56.
    Baba, M., Schols, D., Pauwel, R., Balzarini, J. and DeClercq, E., Biochem. Biophys. Res. Commun., 155 (1988) 1404.CrossRefPubMedGoogle Scholar
  57. 57.
    Sharma, R.K., Garg, B.S., Kurosaki, H., Goto, M., Otsuka, M., Yamamoto, T. and Inoue, J.-I., Bioorg. Med. Chem., 8 (2000) 1819.CrossRefPubMedGoogle Scholar
  58. 58.
    Schols, D., Wutzler, P., Kloecking, R., Helbig, B. and DeClercq, E., J. Acquired Immun. Defic. Syndr., 4 (1991) 677.Google Scholar
  59. 59.
    Domagala, J.M., Hagen, S.E., Lunney, E. and Tait, B.D., Warner-Lambert Co., USA, US Patent, No.: USXXAM US 5510375A19960423, 1996.Google Scholar
  60. 60.
    Park, J.G., Park, J.C., Jong, C., Hur, J.M., Park, S.J., Choi, D.R., Shin, D.Y., Park, K.Y., Cho, H.W. and Kim, M.S., Nat. Prod. Sci., 6 (2000) 117.Google Scholar
  61. 61.
    Sharma, R.K., Pande, V., Ramos, M.J., Rajor, H., Chopra, S., Meguro, K., Inoue, J.-I. and Otsuka, M., submitted.Google Scholar
  62. 62.
    Otsuka, M., Fujita, M., Aoki, T., Ishii, S., Sugiura, Y., Yamamoto, T. and Inoue, J.-I., J. Med. Chem., 38 (1995) 3264.CrossRefGoogle Scholar
  63. 63.
    Fujita, M., Otsuka, M. and Sugiura, Y., J. Med. Chem., 39 (1996) 503.CrossRefPubMedGoogle Scholar
  64. 64.
    Kurosaki, H., Sharma, R.K., Aoki, S., Inoue, T., Okamoto, Y., Sugiura, Y., Doi, M., Ishida, T., Otsuka, M. and Goto, M., J. Chem. Soc., Dalton Trans., 4 (2001) 441.Google Scholar
  65. 65.
    QUANTA 97, Molecular Simulations Inc.Google Scholar
  66. 66.
    INSIGHT II, Accelrys Inc.Google Scholar
  67. 67.
    Schaftenar, G. and Noordik, J.H., J. Comput-Aided Mol. Des., 14 (2000) 123.CrossRefPubMedGoogle Scholar
  68. 68.
    Fujii, I. and Hirayama, N., Anal. Sci., 17 (2001) 803.CrossRefPubMedGoogle Scholar
  69. 69.
    Kurosaki, H., Sharma, R.K., Otsuka, M. and Goto, M., Anal. Sci., 19 (2003) 647.CrossRefPubMedGoogle Scholar
  70. 70.
    GOLD 2.0, CCDC Software Ltd., Cambridge, UK. (a) Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727. (b) Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43. (c) Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., ACS Symp. Ser., 719 (1999) 271.Google Scholar
  71. 71.
    DS ViewerPro 5.0, Accelrys Inc.Google Scholar
  72. 72.
    Gaussian 98 (Revision A1), Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R. et al., Gaussian Inc., Pittsburgh, PA, 1998.Google Scholar
  73. 73.
    Politzer, P. and Murray, J.S., In Lipkowitz, K.B. and Boyd, D.B. (Eds.), Reviews in Computational Chemistry Vol. 2. VCH Publishers, New York, 1991, pp. 273–312.Google Scholar
  74. 74.
    Murray, J.S. and Politzer, P., In Schleyer, P.v.R, Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., III and Schreimer, P.R. (Eds.), The Encyclopedia of Computational Chemistry, Wiley & Sons, Chichester, UK, 1998.Google Scholar
  75. 75.
    Murray, J.S. and Politzer, P., In Sapse, A.-M. (Ed.), Molecular Orbital Calculations for Biological Systems, Oxford University Press, New York, 1998, pp. 49–84.Google Scholar
  76. 76.
    Exner, T.E. and Mezey, P.G., J. Phys. Chem. A, 106 (2002) 11791.CrossRefGoogle Scholar
  77. 77.
    Biré, A.S., Bouhmaida, N., Kremenovic, A., Morgant, G. and Ghermani, N.E., J. Phys. Chem. A, 106 (2002) 12170.CrossRefGoogle Scholar
  78. 78.
    (a) MOLEKEL 4.3, Flükiger, P., Lüthi, H.P., Portmann, S. and Weber, J., Swiss Center for Scientific Computing, Manno (Switzerland), 2000–2002. (b) Portmann, S. and Lüthi, H.P., CHIMIA, 54 (2000) 766.Google Scholar
  79. 79.
    (a) Portela, C., Afonso, C.M.M., Pinto, M.M.M. and Ramos, M.J., FEBS Lett., 27435 (2003) 217. (b) Portela, C., Afonso, C.M.M., Pinto, M.M.M. and Ramos, M.J., J. Comput.-Aided Mol. Des., 17 (2003) 583.Google Scholar
  80. 80.
    Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.CrossRefPubMedGoogle Scholar
  81. 81.
    Sanz, F., Manault, F., Rogríguez, J., Lozoya, E. and López, E., J. Comput.-Aided Mol. Des., 7 (1993) 337.CrossRefPubMedGoogle Scholar
  82. 82.
    Mason, J.S., Good, A.C. and Martin, E.J., Curr. Pharm. Des., 7 (2001) 567.CrossRefPubMedGoogle Scholar
  83. 83.
    Tropsha, A. and Zheng, W., Comput. Biochem. Biophys., (2001) 351.Google Scholar
  84. 84.
    Klebe, G., J. Mol. Med., 78 (2000) 269.CrossRefPubMedGoogle Scholar
  85. 85.
    Coleman, J.E., Annu. Rev. Biochem., 61 (1992) 897.CrossRefPubMedGoogle Scholar
  86. 86.
    Amosti, D.N., Annu. Rev. Entomol., 48 (2003) 579.CrossRefPubMedGoogle Scholar
  87. 87.
    Yanofsky, C., Annu. Rev. Biochem., 70 (2001) 1.CrossRefPubMedGoogle Scholar
  88. 88.
    Hiramoto, M., Shimizu, N., Sugimoto, K., Tang, J., Kawakami, Y., Ito, M., Aizawa, S., Tanaka, H., Makino, I. and Handa, H., J. Immunol., 160 (1998) 810.PubMedGoogle Scholar
  89. 89.
    http://www.appsl.niaid.nih.gov/niaid_web/class/ class_search.html.Google Scholar
  90. 90.
    Schneider, G. and Bohm, H., Drug Discov. Today, 7 (2002) 64.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Vineet Pande
    • 1
  • Rakesh K. Sharma
    • 2
  • Jun-Ichiro Inoue
    • 3
  • Masami Otsuka
    • 4
  • Maria J. Ramos
    • 1
  1. 1.REQUIMTE, Departamento de Química, Faculdade de Ci^enciasUniversidade do PortoPortoPortugal
  2. 2.Department of ChemistryUniversity of DelhiDelhi-7India
  3. 3.Institute of Medical ScienceUniversity of TokyoShirokane-dai, Minato-ku, TokyoJapan
  4. 4.Faculty of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan

Personalised recommendations