Skip to main content
Log in

Pharmacophore and receptor models for neurokinin receptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Three neurokinin (NK) antagonist pharmacophore models (Models 1–3) accounting for hydrogen bonding groups in the `head' and `tail' of NK receptor ligands have been developed by use of a new procedure for treatment of hydrogen bonds during superimposition. Instead of modelling the hydrogen bond acceptor vector in the strict direction of the lone pair, an angle is allowed between the hydrogen bond acceptor direction and the ideal lone pair direction. This approach adds flexibility to hydrogen bond directions and produces more realistic RMS values. By using this approach, two novel pharmacophore models were derived (Models 2 and 3) and a hydrogen bond acceptor was added to a previously published NK2 pharmacophore model [Poulsen et al., J. Comput.-Aided Mol. Design, 16 (2002) 273] (Model 1). Model 2 as well as Model 3 are described by seven pharmacophore elements: three hydrophobic groups, three hydrogen bond acceptors and a hydrogen bond donor. Model 1 contains the same hydrophobic groups and hydrogen bond donor as Models 2 and 3, but only one hydrogen bond acceptor. The hydrogen bond acceptors and donor are represented as vectors. Two of the hydrophobic groups are always aromatic rings whereas the other hydrophobic group can be either aromatic or aliphatic. In Model 1 the antagonists bind in an extended conformation with two aromatic rings in a parallel displaced and tilted conformation. Model 2 has the same two aromatic rings in a parallel displaced conformation whereas Model 3 has the rings in an edge to face conformation. The pharmacophore models were evaluated using both a structure (NK receptor homology models) and a ligand based approach. By use of exhaustive conformational analysis (MMFFs force field and the GB/SA hydration model) and least-squares molecular superimposition studies, 21 non-peptide antagonists from several structurally diverse classes were fitted to the pharmacophore models. More antagonists could be fitted to Model 2 with a low RMS and a low conformational energy penalty than to Models 1 and 3. Pharmacophore Model 2 was also able to explain the NK1, NK2 and NK3 subtype selectivity of the compounds fitted to the model. Three NK 7TM receptor models were constructed, one for each receptor subtype. The location of the antagonist binding site in the three NK receptor models is identical. Compounds fitted to pharmacophore Model 2 could be docked into the NK1, NK2 and NK3 receptor models after adjustment of the conformation of the flexible linker connecting the head and tail. Models 1 and 3 are not compatible with the receptor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regoli, D., Boudon, A. and Fauchere, J.L. Pharmacol. Rev., 46 (1994) 551.

    PubMed  Google Scholar 

  2. Poulsen, A., Liljefors, T., Gundertofte, K. and Bjørnholm, B., J. Comput.-Aided Mol. Des., 16 (2002) 273.

    PubMed  Google Scholar 

  3. Williams, D.E., Acta Crystallogr., A36 (1980) 715.

    Google Scholar 

  4. Greenfeder, S., Cheewatrakoolpong, B., Billah, M., Egan, R.W., Keene, E., Murgolo, N.J. and Anthes, J.C., Bioorg. Med. Chem., 7 (1999) 2867.

    PubMed  Google Scholar 

  5. Blaney, F.E., Raveglia, L.F., Artico, M., Cavagnera, S., Dar-tois, C., Farina, C., Grugni, M., Gagliardi, S., Luttmann, M.A., Martinelli, M., Nadler, G.M., Parini, C., Petrillo, P., Sarau, H.M., Scheideler, M.A., Hay, D.W. and Giardina, G.A., J. Med. Chem., 44 (2001) 1675.

    PubMed  Google Scholar 

  6. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le, T., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M., Science, 289 (2000) 739. b. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235. http://www.rcsb.org/pdb/

    PubMed  Google Scholar 

  7. Elling, C.E., Thirstrup, K., Nielsen, S.M., Hjorth, S.A. and Schwartz, T.W., Fold. Des., 2 (1997) S76.

    PubMed  Google Scholar 

  8. Elling, C.E. and Schwartz, T.W., EMBO J., 15 (1996) 6213.

    PubMed  Google Scholar 

  9. Donnelly, D., Maudsley, S., Gent, J.P., Moser, R.N., Hurrell, C.R. and Findlay, J.B., Biochem. J., 339 ( Pt 1) (1999) 55.

    PubMed  Google Scholar 

  10. Lundstrom, K., Hawcock, A.B., Vargas, A., Ward, P., Thomas, P. and Naylor, A., Eur. J. Pharmacol., 337 (1997) 73.

    PubMed  Google Scholar 

  11. Cascieri, M.A., MacLeod, A.M., Underwood, D., Shiao, L.L., Ber, E., Sadowski, S., Yu, H., Merchant, K.J., Swain, C.J. and Strader, C.D., J. Biol. Chem., 269 (1994) 6587.

    PubMed  Google Scholar 

  12. Fong, T.M., Yu, H., Cascieri, M.A., Underwood, D., Swain, C.J. and Strader, C.D., J. Biol. Chem., 269 (1994) 2728.

    PubMed  Google Scholar 

  13. Fong, T.M., Yu, H., Cascieri, M.A., Underwood, D., Swain, C.J. and Strader, C.D., J. Biol. Chem., 269 (1994) 14957.

    PubMed  Google Scholar 

  14. Ali, M.A., Bhogal, N., Fishwick, C.W. and Findlay, J.B., Bioorg. Med. Chem. Lett., 11 (2001) 819.

    PubMed  Google Scholar 

  15. Giolitti, A., Cucchi, P., Renzetti, A.R., Rotondaro, L., Zap-pitelli, S. and Maggi, C.A., Neuropharmacology, 39 (2000) 1422.

    PubMed  Google Scholar 

  16. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beck-mann, E. and Downing, K.H., J. Mol. Biol., 213 (1990) (pp899).

  17. Baldwin, J.M., Schertler, G.F. and Unger, V.M., J. Mol. Biol., 272 (1997) 144.

    PubMed  Google Scholar 

  18. Unger, V.M., Hargrave, P.A., Baldwin, J.M. and Schertler, G.F., Nature, 389 (1997) 203.

    PubMed  Google Scholar 

  19. Macromodel 7.1. Schrödinger Inc., Portland, OR.

  20. Hasel, T.F., Hendrickson, T.F. and Still, W.C., Tetrahedron Comput. Methods, 1 (1988) 103.

    Google Scholar 

  21. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  22. Boström, J., Norrby, P.-O. and Liljefors, T., J. Comput.-Aided Mol. Des., 12 (1998) 383.

    PubMed  Google Scholar 

  23. Jaguar 4.1. Schrödinger Inc., Portland, OR.

  24. Horn, F., Weare, J., Beukers, M.W., Hörsch, S., Bairoch, A., Chen, W., Edvardsen, Ø., Campagne, F. and Vriend, G., Nucleic Acids Res., 26 (1998) 275.

    PubMed  Google Scholar 

  25. Pogozheva, I.D., College of Pharmacy, University of Michigan, Ann Arbor, MI, 2002.

    Google Scholar 

  26. Pogozheva, I.D., Lomize, A.L. and Mosberg, H.I., Biophys. J., 72 (1997) 1963.

    PubMed  Google Scholar 

  27. Guntert, P., Braun, W. and Wüthrich, K., J. Mol. Biol., 217 (1991) 517.

    PubMed  Google Scholar 

  28. Huang, R.R., Vicario, P.P., Strader, C.D. and Fong, T.M., Biochemistry, 34 (1995) 10048.

    PubMed  Google Scholar 

  29. CHARMm. Accelrys Inc., San Diego, CA.

  30. Sjöberg, P. In Van de Waterbeemd, H., Testa, B. and Folkers, G., (Eds.), Computer-Assisted Lead Finding and Optimiz-ation. Verlag Helvetica Chimica Acta, Basel, Switzerland, 1997, p. 83.

    Google Scholar 

  31. Lommerse, J.P.M., Price, S.L. and Taylor, R., J. Comput. Chem., 18 (1997) 757.

    Google Scholar 

  32. Edmonds-Alt, X., Proietto, V., Broeck, D.V., Vilain, P., Ad-venier, C., Neliat, G., Fur, G.L. and Brelière, J.-C., Bioorg. Med. Chem. Lett., 3 (1993) 925.

    Google Scholar 

  33. Kubota, H., Kakefuda, A., Okamoto, Y., Fujii, M., Yamamoto, O., Yamagiwa, Y., Orita, M., Ikeda, K., Takeuchi, M., Shibanuma, T. and Isomura, Y., Chem. Pharm. Bull. (Tokyo), 46 (1998) 1538.

    Google Scholar 

  34. Burkholder, T.P., Kudlacz, E.M., Maynard, G.D., Liu, X.G., Le, T.-B., Webster, M.E., Horgan, S.W., Wenstrup, D.L., Fre-und, D.W., Boyer, F., Bratton, L., Gross, R.S., Knippenberg, R.W., Logan, D.E., Jones, B.K. and Chen, T.-M., Bioorg. Med. Chem. Lett., 7 (1997) 2531.

    Google Scholar 

  35. Shih, N.Y., Albanese, M., Anthes, J.C., Carruthers, N.I., Grice, C.A., Lin, L., Mangiaracina, P., Reichard, G.A., Schwerdt, J., Seidl, V., Wong, S.C. and Piwinski, J.J., Bioorg. Med. Chem. Lett., 12 (2002) 141.

    PubMed  Google Scholar 

  36. Burkholder, T P., Kudlacz, E.M., Le, T.-B., Knippenberg, R.W., Shatzer, S.A., Maynard, G.D., Webster, M.E. and Horgan, S.W., Bioorg. Med. Chem. Lett., 6 (1996) 951.

    Google Scholar 

  37. Giardina, G.A.M., Raveglia, L.F. and Grugni, M., Drugs Future, 22 (1997) 1235.

    Google Scholar 

  38. Shah, S.K., Patent US5434158, 1995.

  39. Kubota, H., Kakefuda, A., Nagaoka, H., Yamamoto, O., Ikeda, K., Takeuchi, M., Shibanuma, T. and Isomura, Y., Chem. Pharm. Bull. (Tokyo), 46 (1998) 242.

    Google Scholar 

  40. Burkholder, T.P., Kudlacz, E.M., Le, T.-B. and Maynard, G.D., Patent US5824690, 1998.

  41. Giardina, G.A.M., Grugni, M., Graziani, D. and Raveglia, L.F., Patent WO-09852942, 1998.

  42. Kubota, H., Fujii, M., Ikeda, K., Takeuchi, M., Shibanuma, T. and Isomura, Y., Chem. Pharm. Bull. (Tokyo), 46 (1998) 351.

    Google Scholar 

  43. Mackenzie, A.R., Marchington, A.P., Middelton, D.S. and Meadows, S.D., Patent WO9719942, 1997.

  44. Miller, S.C., Jacobs, R.T. and Shenvi, A.B., Patent EP-739891, 1996.

  45. Nishi, T., Fukazawa, T., Ishibashi, K., Nakajima, K., Sugioka, Y., Iio, Y., Kurata, H., Itoh, K., Mukaiyama, O., Satoh, Y. and Yamaguchi, T., Bioorg. Med. Chem. Lett., 9 (1999) 875.

    PubMed  Google Scholar 

  46. Shankar, B.B., Patent WO-09818785, 1998.

  47. Selway, C.N. and Terrett, N.K., Bioorg. Med. Chem., 4 (1996) 645.

    PubMed  Google Scholar 

  48. McCormick, K.D. and Lupo, A.T., Patent WO-09639383, 1996.

  49. Shankar, B.B., Patent US5688960, 1997.

  50. Smith, P.W., Cooper, A.W., Bell, R., Beresford, I.J., Gore, P.M., McElroy, A.B., Pritchard, J.M., Saez, V., Taylor, N.R. and Sheldrick, R.L., J. Med. Chem., 38 (1995) 3772.

    PubMed  Google Scholar 

  51. Cooper, A.W.J., Adams, H.S., Bell, R., Gore, P.M., McElroy, A.B., Pritchard, J.M., Smith, P.W. and Ward, P., Bioorg. Med. Chem. Lett., 4 (1994) 1951.

    Google Scholar 

  52. Reichard, G., Aslain, R., Alaimo, C., Kirkup, M. and Lupo, A., Patent US5696267, 1997.

  53. Mackenzie, A.R., Marchington, A.P., Meadows, S.D. and Middleton, D.S., Patent EP-791592, 1997.

  54. Mackenzie, A.R., Marchington, A.P., Middelton, D.S. and Meadows, S.D., Patent WP9727185, 1997.

  55. Burkholder, T.P., Maynard, G.D. and Kudlacz, E.M., Patent WO9827086, 1998.

  56. Oka, H., Lida, M., Sato, Y. and Honda, M., Patent WO9900388, 1999.

  57. Harrison, T., Korsgaard, M.P., Swain, C.J., Cascieri, M.A., Sadowski, S. and Seabrook, G.R., Bioorg. Med. Chem. Lett., 8 (1998) 1343.

    PubMed  Google Scholar 

  58. Monaghan, S.M., Alker, D. and Burns, C.J., Patent WO9857972, 1998.

  59. Shenvi, A.B., Jacobs, R.T., Miller, S.C., Macht, C.J. and Veale, C.A., Patent WO-09516682, 1995.

  60. Gerspacher, M. and von Sprecher, A., Drugs Future, 24 (1999) 883.

    Google Scholar 

  61. Burkholder, T.P., Bioorg. Med. Chem. Lett., 7 (1997) 2531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulsen, A., Bjørnholm, B., Gundertofte, K. et al. Pharmacophore and receptor models for neurokinin receptors. J Comput Aided Mol Des 17, 765–783 (2003). https://doi.org/10.1023/B:JCAM.0000017497.58165.d8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017497.58165.d8

Navigation