Skip to main content
Log in

Computational models to predict blood–brain barrier permeation and CNS activity

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The blood–brain permeation of a structurally diverse set of 281 compounds was modeled using linear regression and a multivariate genetic partial least squares (G/PLS) approach. Key structural features affecting the logarithm of blood–brain partitioning (logBB) were captured through statistically significant quantitative structure–activity relationship (QSAR) models. These relationships reveal the importance of logP, polar surface area, and a variety of electrotopological indices for accurate predictions of logBB. The best models reveal an excellent correlation (r > 0.9) for a training set of 58 compounds. Likewise, the comparison of the average logBB values obtained from an ensemble of QSAR models with experimental values also verifies the statistical quality of the models (r > 0.9). The models provide good agreement (r ∼ 0.7) between the predicted logBB values for 34 molecules in the external validation set and the experimental values. To further validate the models for use during the drug discovery process, a prediction set of 181 drugs with reported CNS penetration data was used. A >70% success rate is obtained by using any of the QSAR models in the qualitative prediction for CNS permeable (active) drugs. A lower success rate (∼60%) was obtained for the best model for CNS impermeable (inactive) drugs. Combining the predictions obtained from all the models (consensus) did not significantly improve the discrimination of CNS active and CNS inactive molecules. Finally, using the therapeutic classification as a guiding tool, the CNS penetration capability of over 2000 compounds in the Synthline® database was estimated. The results were very similar to the smaller set of 181 compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. (a) Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M., J. Med. Chem., 37 (1994) 1385. (b) Ajay, Walters, W.P. and Murcko, M.A., J. Med. Chem., 41 (1998) 3314. (c) Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.

    PubMed  Google Scholar 

  2. (a) Tarbit, M.H. and Berman, J., Curr. Opin. Chem. Biol., 2 (1998) 411 and references cited therein. (b) Clark, D.E. and Pickett, S.D., Drug Discov. Today, 5 (2000) 49 and references cited therein.

    PubMed  Google Scholar 

  3. (a) Goldstein, G.W. and Betz, A.L., Sci. Am., 255 (1986) 74. (b) Greig, N.H., Brossi, A., Pei, X.F., Ingram, D.K., and Soncrant, T.T. (Eds.), In New Concepts of a Blood-Brain Barrier; Greenwood, J., et al., Plenum, New York, NY, 1995, pp. 251-264. (c) deVries, H.E., Kuiper, J., De Boer, A.G., van Berkel, T.J.C. and Breimer, D.D., Pharmacol. Rev., 49 (1997) 143. (d) Partridge, W.M., J. Neurochem., 70 (1998) 1781. (e) Pardridge, W.M., Drug Discov. Today, 6 (2001) 1.

    PubMed  Google Scholar 

  4. (a) Tamai, I. and Tsuji, A., Adv. Drug. Deliv. Rev., 19 (1996) 401. (b) Eddy, E.P., Maleef, B.E., Hart, T.K. and Smith, P.L., Adv. Drug Deliv. Rev., 23 (1997) 185. (c) Reichel, A. and Begley, D.J., Pharm. Res., 15 (1998) 1270. (d) Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buee-Scherrer, V., Duhem, C., Landquist, S., Rentfel, M., Torpier, G. and Dehouck, M.P., Adv. Drug Deliv. Rev., 36 (1999) 165.

    Google Scholar 

  5. (a) Hansch, C., Björkroth, J.P. and Leo, A., J. Pharm. Sci., 76 (1987) 663. (b) Gupta, S.P., Chem. Rev., 89 (1989) 1765. (c) Basak, S.C., Gutte, B.D. and Drewes, L.R., Pharm. Res., 13 (1996) 775.

    PubMed  Google Scholar 

  6. Kansy, M. and van de Waterbeemd, H., Chimia, 46 (1992) 299.

    Google Scholar 

  7. Young, R.C., Mitchell, R.C., Brown, T.H., Ganellin, C.R., Griffiths, R., Jones, M., Rana, K.K., Saunders, D., Smith, I.R., Sore, N.E. and Wilks, T.J., J. Med. Chem., 31 (1988) 656.

    PubMed  Google Scholar 

  8. Levin, V.A., J. Med. Chem., 23 (1980) 682.

    PubMed  Google Scholar 

  9. (a) Chadha, H., Abraham, M.H. and Mitchell, R.C., Proceedings of an International Conference on the New Concept of a Blood-Brain Barrier, London, 1994. (b) Seelig, A., Gottschlich, R., and Dervent, R.M., Proc. Natl. Acad. Sci. USA, 91 (1994) 68.

  10. (a) Abraham, M.H., Chadha, H.S. and Mitchell, R.C., J. Pharm. Sci., 83 (1994) 1257. (b) Abraham, M.H., Chadha, H.S. and Mitchell, R.C., Drug Des. Discov., 13 (1995) 123.

    PubMed  Google Scholar 

  11. Keserü, G.M. and Molnár, L., J. Chem. Inf. Comput. Sci., 41 (2001) 210.

    Google Scholar 

  12. Lombardo, F., Blake, J.F. and Curatolo, J.W., J. Med. Chem., 39 (1996) 4750.

    PubMed  Google Scholar 

  13. Norinder, U., Sjöberg, P. and Österberg, T., J. Pharm. Sci., 87 (1998) 952.

    PubMed  Google Scholar 

  14. (a) Wold, S., Johansson, E. and Cocchi, M. (Eds.), PLS - Partial Least Squares Projection to Latent Structures. In: 3D QSAR in Drug Design; Kubinyi, H. (Ed.) ESCOM, Leiden, The Netherlands, 1993, pp. 523-550. (b) Wold, S. (Ed.), In Chemometric Methods in Molecular Design; van de Waterbeemd, H., VCH, Weinheim, Germany, 1995, pp. 195-218.

  15. Crivori, P., Cruciani, G., Carrupt, P. and Testa, B., J. Med. Chem., 43 (2000) 2204.

    PubMed  Google Scholar 

  16. Luco, J.M., J. Chem. Inf. Comput. Sci., 39 (1999) 396.

    PubMed  Google Scholar 

  17. Rose, K., Hall, L.H. and Kier, L.B., J. Chem. Inf. Comput. Sci., 42 (2002) 651.

    PubMed  Google Scholar 

  18. Lobell, M., Molnár, L. and Keserü, G.M., J. Pharm. Sci., 92 (2003) 360.

    PubMed  Google Scholar 

  19. Liu, R., Sun, H. and So, S.S., J. Chem. Inf. Comput. Sci., 41 (2001) 1623.

    PubMed  Google Scholar 

  20. Clark, D.E., J. Pharm. Sci., 88 (1999) 815.

    PubMed  Google Scholar 

  21. Clark, D.E., J. Pharm. Sci., 88 (1999) 807.

    PubMed  Google Scholar 

  22. (a) Clog P. Daylight Chemical Information Software, version 4.51. Daylight Chemical Information Inc., Mission Viejo, CA. (b) Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I. and Matsushita, Y., Chem. Pharm. Bull., 40 (1992) 127.

  23. van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. and Raevsky, O., J. Drug Target, 6 (1998) 151.

    PubMed  Google Scholar 

  24. Fischer, H., Gottschlich, R. and Seelig, A., J. Membr. Biol., 165 (1998) 201.

    PubMed  Google Scholar 

  25. Ajay, Bemis, G.W. and Murcko, M.A., J. Med. Chem., 42 (1999) 4942.

    PubMed  Google Scholar 

  26. Comprehensive Medicinal Chemistry Release 94.1 is available from MDL Information Systems Inc., San Leandro, CA.

  27. MACCS-II Drug Data Report is available from MDL Information Systems Inc., San Leandro, CA.

  28. (a) Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR, Vol. 1. Fundamentals and Applications in Chemistry and Biology; Vol. 2. Hydrophobic, Electronic, and Steric Constants; American Chemical Society, Washington, DC, 1995. (b) Structure-Property Correlations in Drug Research; van de Waterbeemd, H., VCH, Weinheim, Germany, 1995, Vol. 3.

    Google Scholar 

  29. (a) Rogers, D. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 34 (1994) 854. (b) Rogers, D. (Ed.), In Genetic Algorithms in Molecular Modeling; Devillers, J., Academic, London, 1996.

    Google Scholar 

  30. Prous Science Synthline® Drug Synthesis Database on CDROM, Barcelona, Philadelphia, Feb. 2000 release.

  31. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. and Skiff, W.M., J. Am. Chem. Soc., 114 (1992) 10024.

    Google Scholar 

  32. Wessel, M.D., Jurs, P.C., Tolan, J.W. and Muskal, S.M., J. Chem. Inf. Comput. Sci., 38 (1998) 726.

    PubMed  Google Scholar 

  33. Jacobs, M.H. Diffusion Processes; Springer-Verlag, Berlin, Germany, 1935, p. 13.

    Google Scholar 

  34. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163 and references cited therein.

    Google Scholar 

  35. Stanton, D.T. and Jurs, P.C., Anal. Chem., 62 (1990) 2323.

    Google Scholar 

  36. Hall, L.H., Kier, L.B. and Brown, B.B., J. Chem. Inf. Comput. Sci., 35 (1995) 1074.

    Google Scholar 

  37. Lloyd, E.J. and Andrews, P.R., J. Med. Chem., 29 (1986) 453.

    PubMed  Google Scholar 

  38. (a) Kaliszan, R. and Markuszewski, M., Int. J. Pharm., 145 (1966) 9. (b) Chikhale, E.G., Ng, K., Burton, P.S. and Borchardt, R.T., Pharm. Res., 3 (1994) 412.

    Google Scholar 

  39. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23 (1997) 3.

    Google Scholar 

  40. Refer to Cerius2 users manual for the types of atoms considered as hydrogen bond donor and acceptor. In version 4.0, a hydroxyl is both a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD). A carbonyl oxygen is only an HBA; an amide N is a HBD and not an HBA. An N atom with less than 3 bonds is an HBA, a tetrahedral N with 3 bonds and sum of bond orders equal to 3 is an HBA and all N atoms with less than 3 bonds is an HBA.

  41. Compounds Amiodarone, Coumarin, Diltiazem, Doxylamine, Ebastine, Loratadine, Neostigmine, and Pheniramine do not have any H-bond donor atoms.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, G., Kitchen, D.B. Computational models to predict blood–brain barrier permeation and CNS activity. J Comput Aided Mol Des 17, 643–664 (2003). https://doi.org/10.1023/B:JCAM.0000017372.32162.37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017372.32162.37

Navigation