Abstract
The blood–brain permeation of a structurally diverse set of 281 compounds was modeled using linear regression and a multivariate genetic partial least squares (G/PLS) approach. Key structural features affecting the logarithm of blood–brain partitioning (logBB) were captured through statistically significant quantitative structure–activity relationship (QSAR) models. These relationships reveal the importance of logP, polar surface area, and a variety of electrotopological indices for accurate predictions of logBB. The best models reveal an excellent correlation (r > 0.9) for a training set of 58 compounds. Likewise, the comparison of the average logBB values obtained from an ensemble of QSAR models with experimental values also verifies the statistical quality of the models (r > 0.9). The models provide good agreement (r ∼ 0.7) between the predicted logBB values for 34 molecules in the external validation set and the experimental values. To further validate the models for use during the drug discovery process, a prediction set of 181 drugs with reported CNS penetration data was used. A >70% success rate is obtained by using any of the QSAR models in the qualitative prediction for CNS permeable (active) drugs. A lower success rate (∼60%) was obtained for the best model for CNS impermeable (inactive) drugs. Combining the predictions obtained from all the models (consensus) did not significantly improve the discrimination of CNS active and CNS inactive molecules. Finally, using the therapeutic classification as a guiding tool, the CNS penetration capability of over 2000 compounds in the Synthline® database was estimated. The results were very similar to the smaller set of 181 compounds.
References
(a) Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M., J. Med. Chem., 37 (1994) 1385. (b) Ajay, Walters, W.P. and Murcko, M.A., J. Med. Chem., 41 (1998) 3314. (c) Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.
(a) Tarbit, M.H. and Berman, J., Curr. Opin. Chem. Biol., 2 (1998) 411 and references cited therein. (b) Clark, D.E. and Pickett, S.D., Drug Discov. Today, 5 (2000) 49 and references cited therein.
(a) Goldstein, G.W. and Betz, A.L., Sci. Am., 255 (1986) 74. (b) Greig, N.H., Brossi, A., Pei, X.F., Ingram, D.K., and Soncrant, T.T. (Eds.), In New Concepts of a Blood-Brain Barrier; Greenwood, J., et al., Plenum, New York, NY, 1995, pp. 251-264. (c) deVries, H.E., Kuiper, J., De Boer, A.G., van Berkel, T.J.C. and Breimer, D.D., Pharmacol. Rev., 49 (1997) 143. (d) Partridge, W.M., J. Neurochem., 70 (1998) 1781. (e) Pardridge, W.M., Drug Discov. Today, 6 (2001) 1.
(a) Tamai, I. and Tsuji, A., Adv. Drug. Deliv. Rev., 19 (1996) 401. (b) Eddy, E.P., Maleef, B.E., Hart, T.K. and Smith, P.L., Adv. Drug Deliv. Rev., 23 (1997) 185. (c) Reichel, A. and Begley, D.J., Pharm. Res., 15 (1998) 1270. (d) Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buee-Scherrer, V., Duhem, C., Landquist, S., Rentfel, M., Torpier, G. and Dehouck, M.P., Adv. Drug Deliv. Rev., 36 (1999) 165.
(a) Hansch, C., Björkroth, J.P. and Leo, A., J. Pharm. Sci., 76 (1987) 663. (b) Gupta, S.P., Chem. Rev., 89 (1989) 1765. (c) Basak, S.C., Gutte, B.D. and Drewes, L.R., Pharm. Res., 13 (1996) 775.
Kansy, M. and van de Waterbeemd, H., Chimia, 46 (1992) 299.
Young, R.C., Mitchell, R.C., Brown, T.H., Ganellin, C.R., Griffiths, R., Jones, M., Rana, K.K., Saunders, D., Smith, I.R., Sore, N.E. and Wilks, T.J., J. Med. Chem., 31 (1988) 656.
Levin, V.A., J. Med. Chem., 23 (1980) 682.
(a) Chadha, H., Abraham, M.H. and Mitchell, R.C., Proceedings of an International Conference on the New Concept of a Blood-Brain Barrier, London, 1994. (b) Seelig, A., Gottschlich, R., and Dervent, R.M., Proc. Natl. Acad. Sci. USA, 91 (1994) 68.
(a) Abraham, M.H., Chadha, H.S. and Mitchell, R.C., J. Pharm. Sci., 83 (1994) 1257. (b) Abraham, M.H., Chadha, H.S. and Mitchell, R.C., Drug Des. Discov., 13 (1995) 123.
Keserü, G.M. and Molnár, L., J. Chem. Inf. Comput. Sci., 41 (2001) 210.
Lombardo, F., Blake, J.F. and Curatolo, J.W., J. Med. Chem., 39 (1996) 4750.
Norinder, U., Sjöberg, P. and Österberg, T., J. Pharm. Sci., 87 (1998) 952.
(a) Wold, S., Johansson, E. and Cocchi, M. (Eds.), PLS - Partial Least Squares Projection to Latent Structures. In: 3D QSAR in Drug Design; Kubinyi, H. (Ed.) ESCOM, Leiden, The Netherlands, 1993, pp. 523-550. (b) Wold, S. (Ed.), In Chemometric Methods in Molecular Design; van de Waterbeemd, H., VCH, Weinheim, Germany, 1995, pp. 195-218.
Crivori, P., Cruciani, G., Carrupt, P. and Testa, B., J. Med. Chem., 43 (2000) 2204.
Luco, J.M., J. Chem. Inf. Comput. Sci., 39 (1999) 396.
Rose, K., Hall, L.H. and Kier, L.B., J. Chem. Inf. Comput. Sci., 42 (2002) 651.
Lobell, M., Molnár, L. and Keserü, G.M., J. Pharm. Sci., 92 (2003) 360.
Liu, R., Sun, H. and So, S.S., J. Chem. Inf. Comput. Sci., 41 (2001) 1623.
Clark, D.E., J. Pharm. Sci., 88 (1999) 815.
Clark, D.E., J. Pharm. Sci., 88 (1999) 807.
(a) Clog P. Daylight Chemical Information Software, version 4.51. Daylight Chemical Information Inc., Mission Viejo, CA. (b) Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I. and Matsushita, Y., Chem. Pharm. Bull., 40 (1992) 127.
van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. and Raevsky, O., J. Drug Target, 6 (1998) 151.
Fischer, H., Gottschlich, R. and Seelig, A., J. Membr. Biol., 165 (1998) 201.
Ajay, Bemis, G.W. and Murcko, M.A., J. Med. Chem., 42 (1999) 4942.
Comprehensive Medicinal Chemistry Release 94.1 is available from MDL Information Systems Inc., San Leandro, CA.
MACCS-II Drug Data Report is available from MDL Information Systems Inc., San Leandro, CA.
(a) Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR, Vol. 1. Fundamentals and Applications in Chemistry and Biology; Vol. 2. Hydrophobic, Electronic, and Steric Constants; American Chemical Society, Washington, DC, 1995. (b) Structure-Property Correlations in Drug Research; van de Waterbeemd, H., VCH, Weinheim, Germany, 1995, Vol. 3.
(a) Rogers, D. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 34 (1994) 854. (b) Rogers, D. (Ed.), In Genetic Algorithms in Molecular Modeling; Devillers, J., Academic, London, 1996.
Prous Science Synthline® Drug Synthesis Database on CDROM, Barcelona, Philadelphia, Feb. 2000 release.
Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. and Skiff, W.M., J. Am. Chem. Soc., 114 (1992) 10024.
Wessel, M.D., Jurs, P.C., Tolan, J.W. and Muskal, S.M., J. Chem. Inf. Comput. Sci., 38 (1998) 726.
Jacobs, M.H. Diffusion Processes; Springer-Verlag, Berlin, Germany, 1935, p. 13.
Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163 and references cited therein.
Stanton, D.T. and Jurs, P.C., Anal. Chem., 62 (1990) 2323.
Hall, L.H., Kier, L.B. and Brown, B.B., J. Chem. Inf. Comput. Sci., 35 (1995) 1074.
Lloyd, E.J. and Andrews, P.R., J. Med. Chem., 29 (1986) 453.
(a) Kaliszan, R. and Markuszewski, M., Int. J. Pharm., 145 (1966) 9. (b) Chikhale, E.G., Ng, K., Burton, P.S. and Borchardt, R.T., Pharm. Res., 3 (1994) 412.
Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23 (1997) 3.
Refer to Cerius2 users manual for the types of atoms considered as hydrogen bond donor and acceptor. In version 4.0, a hydroxyl is both a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD). A carbonyl oxygen is only an HBA; an amide N is a HBD and not an HBA. An N atom with less than 3 bonds is an HBA, a tetrahedral N with 3 bonds and sum of bond orders equal to 3 is an HBA and all N atoms with less than 3 bonds is an HBA.
Compounds Amiodarone, Coumarin, Diltiazem, Doxylamine, Ebastine, Loratadine, Neostigmine, and Pheniramine do not have any H-bond donor atoms.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Subramanian, G., Kitchen, D.B. Computational models to predict blood–brain barrier permeation and CNS activity. J Comput Aided Mol Des 17, 643–664 (2003). https://doi.org/10.1023/B:JCAM.0000017372.32162.37
Issue Date:
DOI: https://doi.org/10.1023/B:JCAM.0000017372.32162.37