Skip to main content
Log in

Contributions to the Ohmic Drop in the Electrolysis of ZnCl2 in a Molten Chloride Electrolyte

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrowinning of zinc from zinc chloride with a molten chloride electrolyte was investigated. The electrolysis of zinc chloride shows ohmic limitations. The energy consumption is to a large extent determined by the anodic reaction, the evolution of chlorine. The chlorine gas plume was visualised in a see-through furnace and images were analysed to determine the plume angle. This parameter serves as an input parameter for a model to determine the ohmic contributions of the electrolyte, the plume and a layer of chlorine bubbles sticking to the anode, as well as the plume velocity. The results indicate that the major contribution (∼60%) to the ohmic drop is due to a stagnant layer of bubbles growing and sticking to the anode, thereby decreasing the effective anode area by coverage. The plume velocity influences coverage characteristics to some extent, which influences the ohmic drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Swinburne and E. A. Ashcroft, British Patent 14 278 (1899).

  2. E. A. Ashcroft, US Patent 1 599 269 (1926).

  3. E. A. Ashcroft, British Patent 198 024 (1923).

  4. E. A. Ashcroft, Trans. lnst. Min. Metall. 43 (1934) 151.

    Google Scholar 

  5. R. Threlfall, J. Soc. Chem. Ind. Trans. 48 (1929) 210

    Google Scholar 

  6. R. Kammel, Erzmetall 16 (1963) 113.

    Google Scholar 

  7. D. J. Fray, J. Appl. Electrochem. 3 (1973) 103.

    Google Scholar 

  8. D. E. Shanks, US Patent 3 962 050 (1976).

  9. D. E. Shanks, F. P. Haver, C. H. Elges and M. M. Wong, Rep. Invest. US Bur. Mines 8343 (1979).

  10. F. P. Haver, D. E. Shanks, D. L. Bixby and M. M. Wong, Rep. Invest. US Bur. Mines 8133 (1976).

  11. M. M. Wong and F. P. Haver, 'Fused-salt electrolysis for production of lead and zinc metals', in proceedings of int. symp. 'Molten salt electrolysis in metal production', Grenoble, France, 19–21 Sept. (1977) The Instn. Min. Metall., pp. 21–29.

  12. S. D. Hill, D. L. Pool and G. A. Smyres, Rep. Invest. US Bur. Mines 8524 (1981).

  13. D. Ferry, Y. Castrillejo and G. Picard, Electrochim. Acta 33 (1988) 1661.

    Google Scholar 

  14. G. Zhao and D. Inman, Trans. Nonferrous. Met. Soc. China 5 (1995) 45.

    Google Scholar 

  15. S. C. Lans, A. van Sandwijk, M. A. Reuter, J. Vandenhaute and E. Robert, 'Possibilities of zinc electrowinning from molten chloride salt', in Proceedings of 'Chloride Metallurgy 2002' (edited by E. Peek and G. Van Weert). International conference on the 'Practice and Theory of Chloride/metal Interaction', 32nd Annual Hydrometallurgy Meeting, Montreal, Canada, 19–23 Oct. (2002) CIM, pp. 615–628.

  16. G. J. Kipouros and D. R. Sadoway, Adv. Molten Salt Chem. 6 (1987) 127.

    Google Scholar 

  17. R. Tunold, H. M. Bo, K. A. Paulsen and J. O. Yttredal, Electrochim. Acta 16 (1971) 2101.

    Google Scholar 

  18. D. A. G. Bruggeman, Ann. Phys. 24 (1935) 659.

    Google Scholar 

  19. J. Eigeldinger and H. Vogt, Electrochim. Acta 45 (2000) 4449.

    Google Scholar 

  20. C. W. M. P. Sillen, 'The Effect of Gas Bubble Evolution on the Energy Efficiency in Water Electrolysis', Dissertation (Technical University, Eindhoven, The Netherlands, 1983).

    Google Scholar 

  21. L. J. J. Janssen, J. Appl. Electrochem. 30 (2000) 507.

    Google Scholar 

  22. B. E. Bongenaar-Schlenter, L. J. J. Janssen, S. J. D. van Stralen and E. Barendrecht, J. Appl. Electrochem. 15 (1985) 537.

    Google Scholar 

  23. U. Erikson and R. Tunold, 'On the initiation of anode effect in chloride melts', in proceedings of international symposium 'Molten Salts' (edited by G. Mamantov, M. Blander, C. Hussey, C. Mamantov, M. L. Saboungi and J. Wilkes), The Electrochemical Society, Vol. 87–7, (1987) pp. 602–612.

  24. P. M. Copham and D. J. Fray, J. Appl. Electrochem. 21 (1991) 158.

    Google Scholar 

  25. A. Roine, 'HSC Chemistry V3. 0', Chemical reaction and equilibrium software, Outokumpu Oy, Finland.

  26. L. R. Farias and G. A. Irons, Met. Trans. B. 17 (1985) 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lans, S., Sandwijk, A.V. & Reuter, M. Contributions to the Ohmic Drop in the Electrolysis of ZnCl2 in a Molten Chloride Electrolyte. Journal of Applied Electrochemistry 34, 1021–1027 (2004). https://doi.org/10.1023/B:JACH.0000042678.49784.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042678.49784.be

Navigation