Skip to main content
Log in

High Rate Anodic Dissolution of 100Cr6 Steel in Aqueous NaNO 3 Solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The high rate anodic dissolution of 100Cr6 steel in NaNO3 electrolytes of various concentrations and at different temperatures was investigated. Galvanostatic flow channel experiments were used to examine the current efficiency of the steel substrate. Below 6 A cm−2(zone A), oxygen evolution dominates, while at higher current densities iron dissolution prevails (zone C). Potentiodynamic polarization studies indicated a complete substrate surface passivation up to +1.8V (vs NHE), and periodic fluctuations of the current density at higher anode potentials (> +1.8 V) due to severe oxygen evolution. Rotating cylinder measurements served for polarization studies at lower current densities in the region of dominating oxygen evolution. Scanning electron micrographs revealed a correlation between the current efficiency and the coverage of the substrate surface with an electronically conductive film at current densities of 2, 9 and 20 A cm−2. The microstructure of the black, solid surface film developing during the high rate anodic dissolution of the steel was found to be heterogeneous and very porous. The main film components, as determined by X-ray diffraction and Auger electron spectroscopical measurements, were amorphous iron oxides, Fe x O y , and inert carbides, M3C, originating from the steel matrix. An activation–repassivation process is proposed, which is responsible for the development of the complex multilayer (multiphase) structure observed at the steel substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-W. Mao, J. Electrochem. Soc. 118 (1971) 1876.

    Google Scholar 

  2. K.-W. Mao, J. Electrochem. Soc. 120 (1973) 1056.

    Google Scholar 

  3. D.-T. Chin and A.J. Wallace, J. Electrochem. Soc. 120 (1973) 1487.

    Google Scholar 

  4. D.-T. Chin and K.-W. Mao, J. Appl. Electrochem. 4 (1974) 155.

    Google Scholar 

  5. J.A. McGeough, 'Principles of Electrochemical Machining', (Chapman & Hall, London, 1974).

    Google Scholar 

  6. M. Datta, IBM J. Res. Develop. 37 (1993) 207.

    Google Scholar 

  7. M. Datta, IBM J. Res. Develop. 42 (1998) 655.

    Google Scholar 

  8. M. Datta and D. Landolt, Electrochim. Acta 25 (1980) 1263.

    Google Scholar 

  9. D. Landolt, R.H. Muller and C.W. Tobias, J. Electrochem. Soc. 116 (1969) 1384.

    Google Scholar 

  10. M. Nagayama and M. Cohen, J. Electrochem. Soc. 109 (1962) 781.

    Google Scholar 

  11. M. Nagayama and M. Cohen, J. Electrochem. Soc. 110 (1963) 670.

    Google Scholar 

  12. J.P. Hoare and C.R. Wiese, Corros. Sci. 15 (1975) 435.

    Google Scholar 

  13. T. Haisch, E.J. Mittemeijer and J.W. Schultze, Z. Metallkd. 92 (2001) 417.

    Google Scholar 

  14. T. Haisch, E.J. Mittemeijer and J.W. Schultze, Electrochim. Acta 47 (2001) 235.

    Google Scholar 

  15. T. Haisch, E.J. Mittemeijer and J.W. Schultze, Mater. Corros. 53 (2002) 740.

    Google Scholar 

  16. K.-W. Mao, M.A. LaBoda and J.P. Hoare, J. Electrochem. Soc. 119 (1972) 419.

    Google Scholar 

  17. T.P. Hoar, Corros. Sci. 7 (1967) 341.

    Google Scholar 

  18. M. Datta, H.J. Mathieu and D. Landolt, J. Electrochem. Soc. 131 (1984) 2484.

    Google Scholar 

  19. M. Datta and D. Landolt, J. Electrochem. Soc. 122 (1975) 1466.

    Google Scholar 

  20. M. Datta and D. Landolt, J. Electrochem. Soc. 124 (1977) 483.

    Google Scholar 

  21. M. Datta and D. Landolt, J. Appl. Electrochem. 7 (1977) 247.

    Google Scholar 

  22. L. Franke and W. Forker, Electrochim. Acta 19 (1974) 27.

    Google Scholar 

  23. A.D. Davydov, E.Y. Grodzinski and A.N. Kamkin, Elektrokhimiya 9 (1973) 518.

    Google Scholar 

  24. A.D. Davydov and V.D. Kaschtschejev, Elektrokhimiya 9 (1974) 154.

    Google Scholar 

  25. M. Pourbaix, 'Atlas of Electrochemical Equilibria', 1st English edn (Pergamon Press, Oxford 1966).

    Google Scholar 

  26. U. Stimming and J.W. Schultze, Electrochim. Acta 24 (1979) 859.

    Google Scholar 

  27. J.W. Schultze and M.A. Habib, J. Appl. Electrochem. 9 (1979) 255.

    Google Scholar 

  28. J.W. Schultze and M.M. Lohrengel, Electrochim. Acta 45 (2000) 2499.

    Google Scholar 

  29. M.M. Lohrengel, paper presented at the ISE-Meeting in Düsseldorf (2002).

  30. A.D. Davydov, Elektrokhimiya 14 (1978) 979.

    Google Scholar 

  31. K. Chikamori and S. Ito, Denki Kagaku 39 (1971) 493.

    Google Scholar 

  32. B. Beverskog and I. Puigdomenech, Corros. Sci. 38 (1996) 2121.

    Google Scholar 

  33. R.C. Weast and M.J. Astle, 'Handbook of Chemistry and Physics', 60th edn (CRC Press, Baco Ratton, FA, 1979–1980).

    Google Scholar 

  34. A.M. Sukhotin and K.M. Kartashova, Corros. Sci. 5 (1965) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, T., Mittemeijer, E. & Schultze, J. High Rate Anodic Dissolution of 100Cr6 Steel in Aqueous NaNO 3 Solution. Journal of Applied Electrochemistry 34, 997–1005 (2004). https://doi.org/10.1023/B:JACH.0000042675.15101.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042675.15101.ff

Navigation