Skip to main content
Log in

A Solid-polymer Electrolyte Direct Methanol Fuel Cell with a Methanol-tolerant Cathode and its Mathematical Modelling

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Solid-polymer electrolyte direct methanol fuel cells (SPE-DMFCs) employing carbon-supported Pt–Fe as oxygen-reduction catalyst to mitigate the effect of methanol on cathode performance while operating with oxygen or air have been assembled. These SPE-DMFCs provided maximum power densities of 250 and 120 mW cm−2 at 85 °C on operating with oxygen and air, respectively. The polarization data for the SPE-DMFCs and their constituent electrodes have also been derived numerically employing a model based on phenomenological transport equations for the catalyst layer, diffusion layer and the membrane electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Aricò, S. Srinivasan and V. Antonucci, Fuel Cells 1 (2001) 1.

    Google Scholar 

  2. M. K. Ravikumar and A. K. Shukla, J. Electrochem. Soc. 143 (1996) 2601.

    Google Scholar 

  3. A. Heinzel and V. M. Barragán, J. Power Sources 84 (1999) 70.

    Google Scholar 

  4. P. S. Kauranen and E. Skou, J. Electroanal. Chem. 408 (1996) 189.

    Google Scholar 

  5. V. Trapp, P. Christensen and A. Hamnett, J. Chem. Soc. Faraday Trans. 92 (1996) 4311.

    Google Scholar 

  6. R. W. Reeve, P. A. Christensen, A. Hamnett, S. A. Haydock and S. C. Roy, J. Electrochem. Soc. 145 (1998) 3463.

    Google Scholar 

  7. N. Alanso-Vante, P. Bogdano. and H. Tributsch, J. Catal. 190 (2000) 240.

    Google Scholar 

  8. M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff, H. Schulenburg and H. Tributsch, J. Electroanal. Chem. 500 (2001) 510.

    Google Scholar 

  9. H. Tributsch, M. Bron, M. Hilgendorff, H. Schulenburg, I. Dorbandt, V. Eyert, P. Bogdanoff and S. Fiechter, J. Appl. Electrochem. 31 (2001) 739.

    Google Scholar 

  10. N. Alonso-Vante, B. Schubert and H. Tributsch, Mater. Chem. Phys. 22 (1989) 281.

    Google Scholar 

  11. A. K. Shukla and R. K. Raman, Ann. Rev. Mater. Res. 33 (2003) 155.

    Google Scholar 

  12. S. DurÒn, R. Rivera-Noriega, G. Poillerat and O. Solorza-Feria, J. New Mat. Electrochem. Systems 4 (2001) 17.

    Google Scholar 

  13. S. DurÒn, R. Rivera-Noriega, M. A. Leyva, P. Nkeng, G. Poillerat and O. Solorza-Feria, J. Solid State Electrochem. 4 (2000) 70.

    Google Scholar 

  14. K. Scott, A. K. Shukla, C. L. Jackson and W. R. A. Muleman, J. Power Sources, (in press).

  15. H. G. Petrow and R. J. Allen, US Patent 3 992 331 (1976).

  16. H. G. Petrow and R. J. Allen, US Patent 3 992 512 (1976).

  17. H. G. Petrow and R. J. Allen, US Patent 4 044 193 (1975).

  18. Z. Wei, H. Guo and Z. Tang, J. Power Sources 62 (1996) 233.

    Google Scholar 

  19. Du PontTM Nafion© PFSA Membrane, NAE101, Nov. (2002).

  20. S. Mukerjee and S. Srinivasan, J. Electroanal. Chem. 357 (1993) 201.

    Google Scholar 

  21. G. Murgia, A. K. Shukla, L. Pisani and K. Scott, J. Electrochem. Soc. 150 (2003) A1231.

    Google Scholar 

  22. L. Pisani, G. Murgia, M. Valentini and B. D' Aguanno, J. Electrochem. Soc. 149 (2002) A898.

    Google Scholar 

  23. D. Natarajan and T. V. Nguyen, J. Electrochem. Soc. 148 (2001) A1324.

    Google Scholar 

  24. A. K Shukla, M. Neergat, P. Bera, V. Jayaram and M. S. Hegde, J. Electroanal. Chem. 504 (2001) 111.

    Google Scholar 

  25. S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science 287 (2000) 1989.

    Google Scholar 

  26. G. K. Williamson and W. H. Hall, Acta Metall. 1 (1953) 22.

    Google Scholar 

  27. A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura and R. Kumashiro, J. Electroanal. Chem. 563 (2004) 181.

    Google Scholar 

  28. H. Uchida, H. Ozuka and M. Watanabe, Electrochim. Acta 47 (2002) 3629.

    Google Scholar 

  29. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Google Scholar 

  30. K. Scott, W. Taama, and J. Cruickshank, J. Power Sources 65 (1997) 159.

    Google Scholar 

  31. Z. Ogumi, Z. Takehara and S. Yoshizawa, J. Electrochem. Soc. 131 (1984) 769.

    Google Scholar 

  32. D. M. Bernardi and M. W. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.

    Google Scholar 

  33. D. R. Lide and H. P. R. Frederikse, 'Handbook of Chemistry and Physics', (CRC Press, Boca Ratton, OH, 2000).

    Google Scholar 

  34. X. Ren, T. A. Zawodzinski Jr., F. Uribe, H. Dai and S. Gottesfeld, in I, S. Gottesfeld, G. Halpert, A. Landgrebe (Eds), 'Proton Conducting Fuel Cells', PV 95–23, p. 284, The Electrochemical Society Proceeding Series, Pennington, NJ (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, R., Murgia, G. & Shukla, A. A Solid-polymer Electrolyte Direct Methanol Fuel Cell with a Methanol-tolerant Cathode and its Mathematical Modelling. Journal of Applied Electrochemistry 34, 1029–1038 (2004). https://doi.org/10.1023/B:JACH.0000042674.78355.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042674.78355.6c

Navigation