Skip to main content
Log in

Electrodeposition Behaviour of Cadmium Telluride from 1-ethyl-3-methylimidazolium Chloride Tetrafluoroborate Ionic Liquid

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetry at a glassy carbon electrode was used to study the electrochemical deposition of Cd–Te from the Lewis basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate air-stable room temperature ionic liquid between 80 °C and 140 °C. Deposition of tellurium alone occurs through a four-electron reduction of Te(iv) to Te which could be further reduced to Te(-ii) at a more negative potential. The Cd–Te electrodeposits could be obtained by the underpotential deposition (UPD) of Cd on the deposited Te. The UPD of Cd on Te was, however, limited by a slow charge transfer rate. Samples of Cd–Te electrodeposits were prepared on tungsten and titanium substrates and characterized by energy dispersive spectroscope (EDS), scanning electron microscope (SEM), and X-ray powder diffraction (XRD). The results showed that an excess amount of Cd(ii) was required in order to prepare CdTe codeposits with a Cd/Te atomic ratio approached 1/1. The deposit composition was independent of the deposition potential within the Cd UPD range. Raising the deposition temperature increased the UPD rate of Cd and promoted the formation polycrystalline CdTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Streetman and S. Banerjee, 'Solid State Electronic Devices' (Prentice Hall, New Jersey, 1995).

    Google Scholar 

  2. M. H. Milesed and W. S. McEwan, J. Electrochem. Soc. 119 (1972) 1188.

    Google Scholar 

  3. M. P. R. Panicker, M. Knaster and F. A. Kropger, J. Electrochem. Soc. 125 (1978) 566.

    Google Scholar 

  4. J. Llabres, J. Electrochem. Soc. 131 (1984) 464.

    Google Scholar 

  5. W. J. Danaher and L. E. Lyons, Aust. J. Chem. 37 (1984) 689.

    Google Scholar 

  6. K. Uosaki, M. Takahashi and H. Kita, Electrochim. Acta 29 (1984) 279.

    Google Scholar 

  7. C. Sella, P. Boncorp and J. Vedel, J. Electrochem. Soc. 133 (1986) 2043.

    Google Scholar 

  8. (a) K. Murase, H. Uchida, T. Hirato and Y. Awakura, J. Electrochem. Soc. 146 (1999) 531;(b) K. Murase, H. Watanabe, S. Mori, T. Hirato and Y. Awakura, J. Electrochem. Soc. 146 (1999) 4477;(c) K. Murase, T. Honda, M. Yamamoto, T. Hirato and Y. Awakura, J. Electrochem. Soc. 148 (2001) C203;(d) K. Murase, M. Matsui, T. Hirato and Y. Awakura, J. Electrochem. Soc. 150 (2003) C44.

    Google Scholar 

  9. L. Gheorghita, M. Cocivera, A. J. Nelson and A. B. Swartzlander, J. Electrochem. Soc. 141 (1994) 529.

    Google Scholar 

  10. R. B. Gore, R. K. Pandey and S. K. Kullarni, Solar Energy Mater. 18 (1989) 159.

    Google Scholar 

  11. I. Markov and M. Ilieva, Thin Solid Films 74 (1980) 109.

    Google Scholar 

  12. C. L. Hussey, in G. Mamantov and A. I. Popov (Eds), 'Chemistry of Nonaqueous Solutions Current Progress'(VCH, New York, 1994), p. 227.

    Google Scholar 

  13. R. T. Carlin and J. S. Wilkes, in Mamantov and A. I. Popov (Eds), 'Chemistry of Nonaqueous Solutions Current Progress'(VCH, New York, 1994), p. 277.

    Google Scholar 

  14. R. D. Rogers and K. R. Seddon (Eds), 'Ionic Liquids Industrial Applications to Green Chemistry'(ACS, Washington, DC, 2002).

    Google Scholar 

  15. P. Wasserscheid, T. Welton (Eds), 'Ionic liquids in Synthesis' (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  16. W-H. Lo, H-Y. Yang and G-T. Wei, Green Chemistry 5 (2003) 639.

    Google Scholar 

  17. G. R. Stafford and C. L. Hussey, in R. C. Alkire and D. M. Kolb (Eds), 'Advances in Electrochemical Science and Engineering', Vol. 7 (Wiley-VCH, Weinheim, 2001), p. 275.

    Google Scholar 

  18. F. Endres, Chem Phys Chem. 3 (2002) 144.

    Google Scholar 

  19. M. K. Carpenter and M. W. Verbrugge, J. Mater. Res. 9 (1994) 2584.

    Google Scholar 

  20. M-C. Lin, P-Y. Chen and I-W. Sun, J. Electrochem. Soc. 148 (2001) C653.

    Google Scholar 

  21. F. Endres and Sh. Zein El Abedin, Chem. Commun. (2002) 892.

  22. M-H. Yang, M-C. Yang and I-W. Sun, J. Electrochem. Soc. 150 (2003) C544.

    Google Scholar 

  23. P-Y. Chen and I-W. Sun, Electrochim. Acta 45 (1999) 441.

    Google Scholar 

  24. P-Y. Chen and I-W. Sun, Electrochim. Acta 45 (2000) 3163.

    Google Scholar 

  25. W. Freyland, C. A. Zell, S. Zein El Abedin and F. Endres, Electrochim. Acta 48 (2003) 3053.

    Google Scholar 

  26. M-H. Yang and I-W. Sun, J. Appl. Electrochem. 33 (2003) 1077.

    Google Scholar 

  27. R. F. de Souza, J. C. Padilha and R. S. Goncalves, Electrochem. Commun. 5 (2003) 728.

    Google Scholar 

  28. J. N. Barisci, G. G. Wallace, D. R. Macfarlane and R. H. Baughman, Electrochem. Commun. 6(2004) 22.

    Google Scholar 

  29. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem. 21 (1982) 1263.

    Google Scholar 

  30. E. G-S. Jeng and I-W. Sun, J. Electrochem. Soc. 144 (1997) 2369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiu, SI., Sun, IW. Electrodeposition Behaviour of Cadmium Telluride from 1-ethyl-3-methylimidazolium Chloride Tetrafluoroborate Ionic Liquid. Journal of Applied Electrochemistry 34, 1057–1063 (2004). https://doi.org/10.1023/B:JACH.0000042670.84645.c5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042670.84645.c5

Navigation